为提升风火两大主力电源对电网频率的主动支撑能力,提出一种基于多尺度分解的风火储协同调频控制策略。首先,考虑风火及储能参与电网调频时的不同响应时间尺度,提出基于小波包分解的频差指令多尺度分解方法及风火储分别响应中低高频差分量的互补匹配方案;提出适应火电调频响应特性的频差指令低频分量获取方法,发展考虑风电有功裕度和储能容量约束的风储出力自趋优调配方法,实现风火储与中低高频分量的精准对应;针对不同运行工况,提出基于调频裕度的风电场聚类分区方法及风力机有功功率智能调控方法,提升风电场对电网频率的主动支撑能力。仿真结果表明,所提策略能有效实现风火储联合参与一次调频,在满足约束的前提下,充分利用风储调频容量,有效改善系统频率特性。
Abstract
To improve the active support ability of the two major power of wind and thermal to the grid frequency, a cooperative frequency regulation control strategy of wind-thermal-storage based on multi-scale decomposition is proposed. Firstly, considering the different response time scales of wind power, thermal, and energy storage participating in the frequency regulation of power grid, a multi-scale decomposition method of frequency deviation command based on wavelet packet decomposition and a complementary matching scheme of wind-thermal-storage responding to medium, low, and high frequency components are proposed. Then, the low frequency component acquisition method of frequency deviation is proposed to adapt to the response characteristics of thermal power. And considering the constraints of active power reserve of wind farm and energy storage capacity, the self-optimal distribution method of output power of wind farm, thermal, and storage is developed to realized accurate match between wind power, thermal, and storage and medium, low, and high frequency components. Furthermore, according to different operating conditions, the cluster grouping method of wind farms based on active power reserve and intelligent distribution method of active power of wind turbines are proposed to improve the active support ability of wind farms to power grid frequency. Finally, simulation results show that the proposed strategy can effectively realize the participation of the wind-thermal-storage in primary frequency regulation, and make full use of the wind power and storage frequency regulation capacity to effectively improve the frequency characteristics of the system on the premise of meeting the constraints.
关键词
风电并网 /
电网调频 /
小波包分解 /
K-均值聚类 /
协同互补 /
自趋优调配
Key words
wind power integration /
electric frequency regulation /
wavelet decomposition /
K-means clustering /
cooperation and complementarity /
self-optimizing distribution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 苏烨, 石剑涛, 张江丰, 等. 考虑调频的储能规划与竞价策略综述[J]. 电力自动化设备, 2021, 41(9): 191-198.
SU Y, SHI J T, ZHANG J F, et al.Review on planning and bidding strategy of energy storage considering frequency regulation[J]. Electric power automation equipment, 2021, 41(9): 191-198.
[2] 丁怡婷. “风光产业”助力能源低碳发展[N]. 人民日报, 2021-02-26.
DING Y T. Wind and solar industry help the development of low carbon energy[N]. People’s daily, 2021-02-26.
[3] 张圣祺, 袁蓓, 徐青山, 等. 规模化储能参与下的电网二次调频优化控制策略[J]. 电力自动化设备, 2019, 39(5): 82-88, 95.
ZHANG S Q, YUAN B, XU Q S, et al.Optimal control strategy of secondary frequency regulation for power grid with large-scale energy storages[J]. Electric power automation equipment, 2019, 39(5): 82-88, 95.
[4] 赵珊珊, 周勤勇, 赵强, 等. 计及频率约束的风电最大接入比例研究[J]. 中国电机工程学报, 2018, 38(S1): 24-31.
ZHAO S S, ZHOU Q Y, ZHAO Q, et al.Research on maximum penetration level of wind generation considering frequency constraint[J]. Proceedings of the CSEE, 2018, 38(S1): 24-31.
[5] SUN J, LI M J, ZHANG Z G, et al.Renewable energy transmission by HVDC across the continent: system challenges and opportunities[J]. CSEE journal of power and energy systems, 2017, 3(4): 353-364.
[6] 朱大锐, 赵晓妮, 段建东. 考虑系统调峰特性的风光消纳优化[J]. 电网与清洁能源, 2021, 37(2): 139-146.
ZHU D R, ZHAO X N, DUAN J D.Optimization of wind/photovoltaic power consumption considering peak regulation characteristics[J]. Power system and clean energy, 2021, 37(2): 139-146.
[7] 赵团团, 邬昌军, 巩晓赟. 基于最优滚动控制域的储能控制策略[J]. 太阳能学报, 2023, 44(2): 247-253.
ZHAO T T, WU C J, GONG X Y.Energy storage control strategy based on optimal rolling control domain[J]. Acta energiae solaris sinica, 2023, 44(2): 247-253.
[8] GB/T 40595—2021, 并网电源一次调频技术规定及试验导则[S].
GB/T 40595—2021, Guide for technology and test on primary frequency control of grid-connected power resource[S].
[9] 王涛, 王廷涛, 刘芮, 等. 计及动态频率响应约束的高比例风电电力系统机组组合模型[J]. 高电压技术, 2021, 47(10): 3463-3479.
WANG T, WANG Y T, LIU R, et al.Unit commitment model of high proportion wind power system considering dynamic frequency response constraints[J]. High voltage engineering, 2021, 47(10): 3463-3479.
[10] LIU Y, DU W J, XIAO L Y, et al.Sizing energy storage based on a life-cycle saving dispatch strategy to support frequency stability of an isolated system with wind farms[J]. IEEE access, 2019, 7: 166329-166336.
[11] 李聪, 秦立军. 基于改进粒子群算法的混合储能独立调频的容量优化研究[J]. 太阳能学报, 2023, 44(1): 426-434.
LI C, QIN L J.Sizing optimization for hybrid energy storage system independently participating in regulation market using improved particle swarm optimization[J]. Acta energiae solaris sinica, 2023, 44(1): 426-434.
[12] 李欣然, 黄际元, 陈远扬, 等. 基于灵敏度分析的储能电池参与二次调频控制策略[J]. 电工技术学报, 2017, 32(12): 224-233.
LI X R, HUANG J Y, CHEN Y Y, et al.Battery energy storage control strategy in secondary frequency regulation considering its action moment and depth[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 224-233.
[13] 苗福丰, 唐西胜, 齐智平. 风储联合调频下的电力系统频率特性分析[J]. 高电压技术, 2015, 41(7): 2209-2216.
MIAO F F, TANG X S, QI Z P.Analysis of frequency characteristics of power system based on wind farm-energy storage combined frequency regulation[J]. High voltage engineering, 2015, 41(7): 2209-2216.
[14] 梁恺, 彭晓涛, 秦世耀, 等. 基于协同控制优化风储系统频率响应的策略研究[J]. 中国电机工程学报, 2021, 41(8): 2628-2641.
LIANG K, PENG X T, QIN S Y, et al.Study on synergetic control strategy for optimizing frequency response of wind farm augmented with energy storage system[J]. Proceedings of the CSEE, 2021, 41(8): 2628-2641.
[15] 李军徽, 范兴凯, 穆钢, 等. 10 kW/20 kWh锂电池储能协同风电一次调频备用的实验验证[J]. 太阳能学报, 2018, 39(5): 1373-1379.
LI J H, FAN X K, MU G, et al.Experimental analysis of 10 kW/20 kWh lithium battery energy storage system witch combined with wind power as primary frequency modulation reserve[J]. Acta energiae solaris sinica, 2018, 39(5): 1373-1379.
[16] 颜湘武, 崔森, 常文斐. 考虑储能自适应调节的双馈感应发电机一次调频控制策略[J]. 电工技术学报, 2021, 36(5): 1027-1039.
YAN X W, CUI S, CHANG W F.Primary frequency regulation control strategy of doubly-fed induction generator considering supercapacitor SOC feedback adaptive adjustment[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1027-1039.
[17] 李欣然, 邓涛, 黄际元, 等. 储能电池参与电网快速调频的自适应控制策略[J]. 高电压技术, 2017, 43(7): 2362-2369.
LI X R, DENG T, HUANG J Y, et al.Battery energy storage systems self-adaptation control strategy in fast frequency regulation[J]. High voltage engineering, 2017, 43(7): 2362-2369.
[18] 杨帆, 王维庆, 王海云, 等. 计及储能放电折损的风储一次调频配置优化方法研究[J]. 太阳能学报, 2022, 43(10): 416-423.
YANG F, WANG W Q, WANG H Y, et al.Research on optimization method of primary frequency regulation configuration of wind-storage system considering discharge loss of energy storage[J]. Acta energiae solaris sinica, 2022, 43(10): 416-423.
[19] STROE D I, KNAP V, SWIERCZYNSKI M, et al.Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: a battery lifetime perspective[J]. IEEE transactions on industry applications, 2017, 53(1): 430-438.
[20] 彭勃, 张峰, 梁军. 考虑风速分区的风: 储系统短期频率响应协同控制策略[J]. 电力系统自动化, 2018, 42(8): 57-65.
PENG B, ZHANG F, LIANG J.Coordinated control strategy for short-term frequency response of wind-energy storage system considering wind speed partition[J]. Automation of electric power systems, 2018, 42(8): 57-65.
[21] 董天翔, 翟保豫, 李星, 等. 风储联合系统参与频率响应的优化控制策略[J]. 电网技术, 2022, 46(10): 3980-3989.
DONG T X, ZHAI B Y, LI X, et al.Optimal control strategy for combined wind-storage system to participate in frequency response[J]. Power system technology, 2022, 46(10): 3980-3989.
[22] MILLER N W, SANCHEZ-GASCA J J, PRICE W W, et al. Dynamic modeling of GE 1.5 and 3.6 MW wind turbine-generators for stability simulations[C]//2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491). Toronto, ON, Canada, 2004: 1977-1983.
[23] ADITYA S K, DAS D.Battery energy storage for load frequency control of an interconnected power system[J]. Electric power systems research, 2001, 58(3): 179-185.
[24] 郑重, 杨振勇, 李卫华. 风电与火电机组的一次调频技术分析及比较[J]. 电力自动化设备, 2017, 37(12): 92-101.
ZHENG Z, YANG Z Y, LI W H.Analysis and comparison of primary frequency control technology for wind power and thermal power unit[J]. Electric power automation equipment, 2017, 37(12): 92-101.
[25] 张磊, 郭语, 石嘉豪, 等. 风火储一体化电站功率特性研究[J]. 动力工程学报, 2022, 42(6): 568-574, 581.
ZHANG L, GUO Y, SHI J H, et al.Study on power characteristics of wind-coal-battery coupling integrated power station[J]. Journal of Chinese Society of Power Engineering, 2022, 42(6): 568-574, 581.
基金
国家自然科学基金(U1766204); 中央高校基本科研业务费专项资金(2023YQ002)