一种基于PSO-VMD和LSTM的复杂山地风电场观测风速数据质量控制算法

熊雄, 姚润进, 程帅兵, 李文龙, 钱栋

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 95-104.

PDF(2928 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2928 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 95-104. DOI: 10.19912/j.0254-0096.tynxb.2022-1854

一种基于PSO-VMD和LSTM的复杂山地风电场观测风速数据质量控制算法

  • 熊雄1, 姚润进2, 程帅兵3, 李文龙4, 钱栋2
作者信息 +

A QUALITY CONTROL ALGORITHM OF WIND SPEED OBSERVATIONS IN COMPLEX MOUNTAIN WIND FARM BASED ON PSO-VMD AND LSTM

  • Xiong Xiong1, Yao Runjin2, Cheng Shuaibing3, Li Wenlong4, Qian Dong1
Author information +
文章历史 +

摘要

复杂山地风电场普遍存在观测风速数据质量差引起风资源评估误差大、风功率预测精度低的问题。而复杂山地风速呈现较强的间隙性、波动性和非平稳性,导致常规质量控制方法无法有效提高数据质量。针对此,提出一种基于粒子群改进变分模态分解和长短期记忆网络的集成学习算法(PVL),并应用于复杂山地观测风速的质量控制以提高风速数据的质量。以广西某复杂山地风场内5基观测塔2015—2016年逐10 min风速数据为案例进行PVL应用效果检验,并与传统单站及空间回归法、反距离加权法进行对比。应用表明,PVL比传统方法具有更高的寻误率,且在异地形、多风况上具有更强的适应性。

Abstract

There are many problems in complex mountain wind farms, such as large errors of wind resource evaluation and low accuracy of wind power prediction caused by poor quality of observed wind speed data. Because of the strong intermittent, fluctuating, and non-stationary characteristics presented by the wind speed in complex mountain wind farms, conventional quality control methods cannot effectively improve data quality. For this situation, an integrated learning algorithm (PVL) based on particle swarm optimization improved variational modal decomposition improved by particle swarm optimization and long short-term memory is proposed and applied to the quality control of wind speed observations in complex mountainous areas to improve the quality of wind speed data. In order to assess the feasibility and applicability of the proposed method, the 10 minutes wind speed observed in five observation tower of a complex mountain wind farm in Guangxi from 2015 to 2016 were examined. Otherwise, we compared this method to spatial regression test(SRT) and inverse distance weighting method(IDW). The results show that the method can more effectively flag suspicious data, and it also has the advantages of high identification accuracy, strong adaptability to different terrains and wind conditions.

关键词

风电场 / 质量控制 / 粒子群 / 变分模态分解 / 长短期记忆网络

Key words

wind farm / quality control / particle swarm optimization / variational modal decomposition / long short-term memory

引用本文

导出引用
熊雄, 姚润进, 程帅兵, 李文龙, 钱栋. 一种基于PSO-VMD和LSTM的复杂山地风电场观测风速数据质量控制算法[J]. 太阳能学报. 2024, 45(3): 95-104 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1854
Xiong Xiong, Yao Runjin, Cheng Shuaibing, Li Wenlong, Qian Dong. A QUALITY CONTROL ALGORITHM OF WIND SPEED OBSERVATIONS IN COMPLEX MOUNTAIN WIND FARM BASED ON PSO-VMD AND LSTM[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 95-104 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1854
中图分类号: TK89   

参考文献

[1] 欧阳志远, 史作廷, 石敏俊, 等. “碳达峰碳中和”: 挑战与对策[J]. 河北经贸大学学报, 2021, 42(5): 1-11.
OUYANG Z Y, SHI Z T, SHI M J, et al.Challenges and countermeasures of “carbon peak and carbon neutrality”[J]. Journal of Hebei University of Economics and Business, 2021, 42(5): 1-11.
[2] FU W L, FANG P, WANG K, et al.Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model[J]. Renewable energy, 2021, 179: 1122-1139.
[3] SINGH S, BHATTI T S, KOTHARI D P.A review of wind-resource-assessment technology[J]. Journal of energy engineering, 2006, 132(1): 8-14.
[4] GB/T 18710—2002, 风电场风能资源评估方法[S].
GB/T 18710—2002, Methodology of wind energy resource assessment for wind farm[S].
[5] HUBBARD K G, YOU J S.Sensitivity analysis of quality assurance using the spatial regression approach-a case study of the maximum/minimum air temperature[J]. Journal of atmospheric and oceanic technology, 2005, 22(10): 1520-1530.
[6] LORENC A C.A global three-dimensional multivariate statistical interpolation scheme[J]. Monthly weather review, 1981, 109(4): 701-721.
[7] WADE C G.A quality control program for surface mesometeorological data[J]. Journal of atmospheric and oceanic technology, 1987, 4(3): 435-453.
[8] LORENC A C, HAMMON O.Objective quality control of observations using Bayesian methods. Theory, and a practical implementation[J]. Quarterly journal of the royal meteorological society, 1988, 114(480): 515-543.
[9] 熊雄, 叶小岭, 张颖超, 等. 基于空间观测差异的地面气温资料质量控制算法研究[J]. 地球物理学报, 2017, 60(3): 912-923.
XIONG X, YE X L, ZHANG Y C, et al.A quality control method for the surface temperature based on the spatial observation diversity[J]. Chinese journal of geophysics, 2017, 60(3): 912-923.
[10] YE X L, YANG X, XIONG X, et al.A quality control method based on an improved random forest algorithm for surface air temperature observations[J]. Advances in meteorology, 2017, 2017: 1-15.
[11] 叶星瑜, 叶小岭, 马伟叁, 等. 基于LMD-TCN的高铁沿线风速观测资料质量控制算法研究[J]. 铁道科学与工程学报, 2022, 19(4): 849-856.
YE X Y, YE X L, MA W S, et al.Research on the quality control method of wind speed observation data along the high-speed railway line based on LMD-TCN[J]. Journal of railway science and engineering, 2022, 19(4): 849-856.
[12] 秦琼, 刘树洁, 赖旭, 等. GA优化ELM神经网络的风电场测风数据插补[J]. 太阳能学报, 2018, 39(8): 2125-2132.
QIN Q, LIU S J, LAI X, et al.Interpolation of wind speed data in wind farm based on GA optimized ELM neural network[J]. Acta energiae solaris sinica, 2018, 39(8): 2125-2132.
[13] 张颖超, 姚润进, 熊雄, 等. PSO-PSR-ELM集成学习算法在地面气温观测资料质量控制中的应用[J]. 气候与环境研究, 2017, 22(1): 59-70.
ZHANG Y C, YAO R J, XIONG X, et al.Application of PSO-PSR-ELM-based ensemble learning algorithm in quality control of surface temperature observations[J]. Climatic and environmental research, 2017, 22(1): 59-70.
[14] MEEK D W, HATFIELD J L.Data quality checking for single station meteorological databases[J]. Agricultural and forest meteorology, 1994, 69(1/2): 85-109.
[15] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[16] WANG D Y, LUO H Y, GRUNDER O, et al.Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction[J]. Renewable energy, 2017, 113: 1345-1358.
[17] SUN W, GAO Q.Short-term wind speed prediction based on variational mode decomposition and linear-nonlinear combination optimization model[J]. Energies, 2019, 12(12): 2322.
[18] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[19] SHEN F R, CHAO J, ZHAO J X.Forecasting exchange rate using deep belief networks and conjugate gradient method[J]. Neurocomputing, 2015, 167: 243-253.
[20] 邓三鸿, 傅余洋子, 王昊. 基于LSTM模型的中文图书多标签分类研究[J]. 数据分析与知识发现, 2017, 1(7): 52-60.
DENG S H, FUYU Y Z, WANG H.Multi-label classification of Chinese books with LSTM model[J]. Data analysis and knowledge discovery, 2017, 1(7): 52-60.
[21] 马远浩, 曾卫明, 石玉虎, 等. 基于加权词向量和LSTM-CNN的微博文本分类研究[J]. 现代计算机(专业版), 2018(25): 18-22.
MA Y H, ZENG W M, SHI Y H, et al.Research on text classification of weibo based on weighted word vectors and LSTM-CNN[J]. Modern computer, 2018(25): 18-22.
[22] EBERHART R, KENNEDY J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, 2002: 39-43.
[23] 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81.
TANG G J, WANG X L.Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 73-81.
[24] NASH J E, SUTCLIFFE J V.River flow forecasting through conceptual models part I-a discussion of principles[J]. Journal of hydrology, 1970, 10(3): 282-290.
[25] ZHANG Y C, XIONG X, ZHANG Q D.An improved self-adaptive PSO algorithm with detection function for multimodal function optimization problems[J]. Mathematical problems in engineering, 2013, 2013: 1-8.
[26] 屠其璞, 王俊德, 丁裕国,等. 气象应用概率统计学[M]. 北京: 气象出版社, 1984: 183-186.
TU Q P, WANG J D, DING Y G, et al.Meteorological application probability statistics[M]. Beijing: China Meteorological Press, 1984: 183-186.
[27] 席世平, 白凌霞, 赵培娟, 等. 2010年9月4日河南孟津罕见雷暴大风过程的分析和预报[C]//第28届中国气象学会年会: S3天气预报灾害天气研究与预报. 厦门, 中国, 2011: 919-927.
XI S P, BAI L X, ZHAO P J, el al. Analysis and prediction of the rare thunderstorm Gale Process in Mengjin, Henan Province on September 4, 2010[C]//The 28th Annual Meeting of China Meteorological Society, Xiamen, China, 2011: 919-927.
[28] 华德尊, 李春艳, 蔡春苗. 二龙山水库流域不同程度生态破坏对小气候要素的影响[J]. 环境科学研究, 2002, 15(3): 16-18.
HUA D Z, LI C Y, CAI C M.The influence of ecological destruction on microclimatic factors in erlongshan reservoir watershed[J]. Research of environmental sciences, 2002, 15(3): 16-18.
[29] SHI Y H, EBERHART R C.Parameter selection in particle swarm optimization[M]. Berlin: Springer Berlin Heidelberg, 1998: 591-600.
[30] PISHGAR-KOMLEH S H, KEYHANI A, SEFEEDPARI P. Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh County of Iran)[J]. Renewable and sustainable energy reviews, 2015, 42: 313-322.
[31] 杨刚, 杜永贤, 陈鸣. 基于风频Weibull分布和风机功率特性求解风机发电量[J]. 电力学报, 2008, 23(4): 276-278, 300.
YANG G, DU Y X, CHEN M.The calculation of energy provided by wind turbine based on its power characteristic and the wind frequency weibull distribution[J]. Journal of electric power, 2008, 23(4): 276-278, 300.

基金

国家自然科学基金(42205150; 42275156); 江苏省自然科学基金(BK20210661); 中国电建集团江西省电力建设有限公司科技项目(JEPCC-KYXM-2023-002)

PDF(2928 KB)

Accesses

Citation

Detail

段落导航
相关文章

/