T型三电平逆变器非对称矢量脉冲宽度调制相电流重构策略

申永鹏, 刘洋, 王帅兵, 齐文雷, 王延峰

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 450-467.

PDF(6676 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(6676 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 450-467. DOI: 10.19912/j.0254-0096.tynxb.2022-1856

T型三电平逆变器非对称矢量脉冲宽度调制相电流重构策略

  • 申永鹏1, 刘洋1, 王帅兵1, 齐文雷2, 王延峰1
作者信息 +

PERFORMANCE STUDY OF DUST ADHESION OF PV MODULE SURFACES ON HIGHWAY SLOPE

  • Yao Lei1,2, Fu Hao2, Ma Kefei3, Jia Ximing3, Huang Pengluan3, Liu Jin2
Author information +
文章历史 +

摘要

针对T型三电平逆变器中点电流单传感器传统相电流重构方法存在不可观测区的问题,分析中点电流采样过程中不可观测区的存在机理,提出非对称矢量脉冲宽度调制相电流重构策略。通过移位PWM波延长基本电压矢量的作用时间,消除不可观测区,实现相电流重构。实验结果表明,所提方法的电流重构误差低于2.2%,输出相电流畸变率低于3.48%。

Abstract

The chemical components of dust on the surface of highway slope PV module are analyzed and study the main influencing factors and mechanism of dust adhesion under condensation conditions are studied. The results show that the dust on the surface of highway slope PV dust is influenced by the environment, which lead to a high content of organic and plant fibers. Combined effects of condensation and organic cause formation of flat film and hydrogen bonds between the dust and surface of PV module to increase adhesion strength. In contrast, the plant fibers reduce the adhesion strength on interfaces.

关键词

脉冲调制 / 相移 / 信号采样 / 相电流重构 / 中点电流 / 不可观测区

Key words

PV modules / dust / adhesion / condensation / organic / highway slope

引用本文

导出引用
申永鹏, 刘洋, 王帅兵, 齐文雷, 王延峰. T型三电平逆变器非对称矢量脉冲宽度调制相电流重构策略[J]. 太阳能学报. 2024, 45(4): 450-467 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1856
Yao Lei, Fu Hao, Ma Kefei, Jia Ximing, Huang Pengluan, Liu Jin. PERFORMANCE STUDY OF DUST ADHESION OF PV MODULE SURFACES ON HIGHWAY SLOPE[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 450-467 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1856
中图分类号: TM341   

参考文献

[1] 习近平. 坚定信心共克时艰共建更加美好的世界[N]. 人民日报, 2021-09-22(002).
XI J P. We will overcome the difficulties together to build a better world[N]. The people's daily, 2021-09-22(002).
[2] 金一丹. 交通运输智能化绿色化将取得实质性突破[N]. 中国证券报, 2022-01-19(A05).
JIN Y D. Intelligent and green transport will make a substantial breakthrough[N]. China securities Journal, 2022-01-19(A05).
[3] 宁会峰, 程荣展, 王伟志, 等. 积灰对光伏发电的影响及除尘效果实验研究[J]. 太阳能学报, 2020, 41(11): 120-125.
NING H F, CHENG R Z, WANG W Z, et al.Experimental study on influence of dust accumulation on photovoltaic power generation and dust removal effect[J]. Acta energiae solaris sinica, 2020, 41(11): 120-125.
[4] DARWISH Z A, KAZEM H A, SOPIAN K, et al.Effect of dust pollutant type on photovoltaic performance[J]. Renewable and sustainable energy reviews, 2015, 41: 735-744.
[5] NAYSHEVSKY I, XU Q F, BARAHMAN G, et al.Fluoropolymer coatings for solar cover glass: anti-soiling mechanisms in the presence of dew[J]. Solar energy materials and solar cells, 2020, 206: 110281.
[6] 温岩, 赵东, 袁春红, 等. 积尘对光伏系统发电的影响研究综述[J]. 太阳能, 2014(11): 36-41.
WEN Y, ZHAO D, YUAN C H, et al.Review on the influence of dust accumulation on photovoltaic system power generation[J]. Solar energy, 2014(11): 36-41.
[7] 张朝辉, 石祎炜, 刘晓豹, 等. 光伏电站中光伏组件的清洗效果分析及清洗周期预测[J]. 太阳能, 2022(12): 53-61.
ZHANG Z H, SHI Y W, LIU X B, et al.Cleaning effect analysis and cleaning cycle prediction of PV modules in PV power stations[J]. Solar energy, 2022(12): 53-61.
[8] HOSU-PRACK A G, LOAN P, ARGHIR G, et al. Marble nano erosion under acid rain evidenced by atomic force microscopy[J]. Carpathian journal of earth and environmental sciences, 2013, 8(4): 75-82.
[9] HOSU-PRACK A G, PETEAN I, ARGHIR G, et al. Particulate matters found in urban street dust[J]. Studia universitatis babeş-bolyai chemia, 2010, 55(3): 93-104.
[10] JAVED W, WUBULIKASIMU Y, FIGGIS B, et al.Characterization of dust accumulated on photo-voltaic panels in Doha, Qatar[J]. Solar energy, 2017, 142: 123-135.
[11] ZHENG M, CASS G R, SCHAUER J J, et al.Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers[J]. Environmental science & technology, 2002, 36(11): 2361-2371.
[12] CHEN Y Z, SHAH N, BRAUN A, et al.Electron microscopy investigation of carbonaceous particulate matter generated by combustion of fossil fuels[J]. Energy & fuels, 2005, 19(4): 1644-1651.
[13] MOUTINHO H R, JIANG C S, TO B, et al.Adhesion mechanisms on solar glass: effects of relative humidity, surface roughness, and particle shape and size[J]. Solar energy materials and solar cells, 2017, 172: 145-153.
[14] HUANG P L, HU G Q, ZHAO X D, et al.Effect of organics on the adhesion of dust to PV panel surfaces under condensation[J]. Energy, 2022, 261: 125255.
[15] ZHAO H M, FANG H W, CHEN M H.Floc architecture of bioflocculation sediment by ESEM and CLSM[J]. Scanning, 2011, 33(6): 437-445.
[16] KAZMERSKI L L, DINIC A S A C, BRASIL M C, et al. Fundamental studies of adhesion of dust to PV module surfaces: chemical and physical relationships at the microscale[J]. IEEE journal of photovoltaics, 2016, 6(3): 719-729.

基金

中国能建交能融合重大科技专项(CEEC2021-KJZX-08-1); 国家自然科学基金(51975235)

PDF(6676 KB)

Accesses

Citation

Detail

段落导航
相关文章

/