针对海上风力机基础设计中的软黏土强度评价问题,通过在浙江嘉兴海域开展球形静力触探试验和室内试验,标定得到适合中国浙江嘉兴海域淤泥质粉质黏土的球形静力触探因子Nball。采用固结快剪试验结果标定得到的NballDS范围为6.70~14.91,总平均值为10.58,标准值为10.91;采用三轴UU试验结果标定得到的NballUU范围为7.75~23.75,总平均值为17.44,标准值为19.03。采用标定得到的Nball值可较好地解译嘉兴海域软黏土的强度,建议采用三轴UU试验结果标定得到的NballUU的标准值19.03作为强度下限值解译参数,采用固结快剪试验得到的NballDS的标准值10.91作为最优强度(中值)解译参数。
Abstract
In addressing the challenge of assessing the strength of soft clay in the foundation design of offshore wind turbines, this paper focuses on the strength calibration of soft clay in Zhejiang Jiaxing's offshore region by ball penetration tests and laboratory test results. The ball penetration factor Nball for moddy silty clay was obtained. The ball penetration factor NballDSdetermined through consolidated quick shear tests, is ranged from 6.70 to 14.91, with a mean of 10.58 and a standard value of 10.91. Likewise, the factorNballUU determined by using triaxial unconsolidated undrained shear test results, is ranged from 7.75 to 23.75, with a mean of 17.44, and a standard value of 19.03. The calibrated ball factor Nball provides a more accurate representation of the soft clay strength in Zhejiang Jiaxing's offshore area. We recommend adopting NballUU with a standard value of 19.03, calibrated from the triaxial UU test, as the parameter for interpreting the lower limit of strength. Additionally, NballDS with a standard value of 10.91, calibrated from the consolidated quick shear test, serves as the parameter for interpreting the best estimate (median value) of strength.
关键词
海上风电场 /
黏土 /
抗剪强度 /
球形静力触探 /
球探因子
Key words
offshore wind farms /
clay /
shear strength /
ball penetration test /
ball penetration factor
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 余建星, 傅一钦, 余杨, 等. 渤海地区双参数风资源评估方法研究[J]. 太阳能学报, 2021, 42(7): 325-332.
YU J X, FU Y Q, YU Y, et al.Research on two-parameters wind resource assessment methods in Bohai Sea[J]. Acta energiae solaris sinica, 2021, 42(7): 325-332.
[2] 刘润, 王迎春, 汪嘉钰, 等. 单侧冲刷对海上风电筒型基础稳定性影响研究[J]. 太阳能学报, 2022, 43(1): 73-79.
LIU R, WANG Y C, WANG J Y, et al.Research on effects of unilateral erosion on stability of offshore wind bucket foundation[J]. Acta energiae solaris sinica, 2022, 43(1): 73-79.
[3] 李思琦, 王媛, 李庆文, 等. 非共面V-H-M复合加载模式下海上风电桶形基础破坏包络面特性研究[J]. 太阳能学报, 2021, 42(6): 391-399.
LI S Q, WANG Y, LI Q W, et al.Failure envelopes of bucket foundations for offshore wind turbines under combined non-planar V-H-M loading[J]. Acta energiae solaris sinica, 2021, 42(6): 391-399.
[4] 王宽君, 吴昊, 倪卫达, 等. 基于CPTU的广东海域黏土工程特性评价[J]. 工程地质学报, 2021, 29(S1): 191-202.
WANG K J, WU H, NI W D, et al.Engineering properties assessment of marine clay in Guangdong offshore area based on CPTU[J]. Journal of engineering geology, 2021, 29(S1): 191-202.
[5] 王立忠, 但汉波, 李玲玲. K0固结软土的循环剪切特性及其流变模拟[J]. 岩土工程学报, 2010, 32(12): 1946-1955.
WANG L Z, DAN H B, LI L L. Cyclic shearing behavior of K0-consolidated clay and its rheological simulation[J]. Chinese journal of geotechnical engineering, 2010, 32(12): 1946-1955.
[6] 姜贞强, 郇彩云, 王胜利, 等. 海上风电单桩基础动力特性识别及现场测试[J]. 太阳能学报, 2020, 41(7): 321-326.
JIANG Z Q, HUAN C Y, WANG S L, et al.Dynamic characteristics identification of monopile offshore wind turbine and field tests[J]. Acta energiae solaris sinica, 2020, 41(7): 321-326.
[7] 杨岩, 刘松玉, 蔡国军, 等. 球型全流触探仪的机理研究及工程应用综述[J]. 工程地质学报, 2017, 25(6): 1603-1609.
YANG Y, LIU S Y, CAI G J, et al.Review on penetration mechanism and application of ball penetrometer in offshore engineering[J]. Journal of engineering geology, 2017, 25(6): 1603-1609.
[8] RANDOLPH M F, HEFER P A, GEISE J M, et al.Improved seabed strength profiling using T-bar penetrometer[C]//Proceedings of the International Conference Offshore Site Investigation and Foundation Behaviour “New Frontiers”, London, UK, 1998: 221-235.
[9] PEUCHEN J, ADRICHEM J, HEFER P A.Practice notes on push-in penetrometers for offshore geotechnical investigation[C]//Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics (ISFOG). Perth, Australia, 2005: 973-979.
[10] 杨懿, 周小文, 周密, 等. 球型静力触探仪贯入双层土的困土效应[J]. 哈尔滨工业大学学报, 2021, 53(11): 110-118.
YANG Y, ZHOU X W, ZHOU M, et al.Effect of trapped soil on penetration of ball penetrometers in two-layered clay[J]. Journal of Harbin Institute of Technology, 2021, 53(11): 110-118.
[11] DEJONG J T, YAFRATE N J, DEGROOT D J.Evaluation of undrained shear strength using full-flow penetrometers[J]. Journal of geotechnical and geoenvironmental engineering, 2011, 137(1): 14-26.
[12] LUNNE T, ANDERSEN K H, LOW H E, et al.Guidelines for offshore in situ testing and interpretation in deepwater soft clays[J]. Canadian geotechnical journal, 2011, 48(4): 543-556.
[13] 夏涵, 蔡国军, 刘松玉, 等. 基于全流触探贯入仪的软土强度特性评价方法[J]. 地下空间与工程学报, 2016, 12(S2): 619-624.
XIA H, CAI G J, LIU S Y, et al.Evaluation method of soft soil strength characteristics based on full-flow penetration tester[J]. Chinese journal of underground space and engineering, 2016, 12(S2): 619-624.
[14] 任玉宾, 王胤, 杨庆. 典型深海软黏土全流动循环软化特性与微观结构探究[J]. 岩土工程学报, 2019, 41(8): 1562-1568.
REN Y B, WANG Y, YANG Q.Full-flow cyclic degradation and micro-structure of representative deep-sea soft clay[J]. Chinese journal of geotechnical engineering, 2019, 41(8): 1562-1568.
[15] GUO X S, NIAN T K, ZHAO W, et al.Centrifuge experiment on the penetration test for evaluating undrained strength of deep-sea surface soils[J]. International journal of mining science and technology, 2022, 32(2): 363-373.
[16] LUNNE T, BERRE T, ANDERSEN K H, et al.Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays[J]. Canadian geotechnical journal, 2006, 43(7): 726-750.
[17] CHUNG S F, RANDOLPH M F.Penetration resistance in soft clay for different shaped penetrometers[C]//Proceedings of the 2nd International Conference on Site Characterisation. Porto, Portugal, 2004: 671-678.
[18] LOW H E, RANDOLPH M F.Strength measurement for near-seabed surface soft soil using manually operated miniature full-flow penetrometer[J]. Journal of geotechnical and geoenvironmental engineering, 2010, 136(11): 1565-1573.
[19] LOW H, LUNNE T, ANDERSEN K, et al.Estimation of intact and remoulded undrained shear strengths from penetration tests in soft clays[J]. Géotechnique, 2010, 60(11): 843-859.
[20] GB 50021—2001(2009年版), 岩土工程勘察规范[S].
GB 50021—2001(2009 edition), Code for investigation of geotechnical engineering[S].
基金
国家自然科学基金(52108356; 52101334); 浙江省自然科学基金(LQ20E090001)