基于储氢合金LaNi5吸放氢性能,建立金属氢化物的储氢数值模型,并利用COMSOL软件进行模型的模拟研究,重点分析直管、翅片与螺旋管结构对容器吸氢和放氢性能的影响。结果表明: 内壁加翅片、带有螺旋管换热的两种结构能有效提高储氢容器吸氢速率,大幅缩短吸/放氢过程时间;温度云图显示,容器内壁加翅片的结构,热量是从壁面向容器中心进行传导;对于容器内部增加螺旋管换热结构,传热是从螺旋管向四周进行,且传热效率更高。与初始模型相比,带有螺旋管换热器结构其吸/放氢质量达到最大质量90%所需时间分别减少31.58%和31.12%。
Abstract
In this work, the mathematical model of hydrogen absorption/desorption of metal hydride was established based on hydrogen storage alloy LaNi5, besides, the model was simulated by COMSOL. Based on this model, the effects of straight tube, fin tube and spiral tube structure on hydrogen absorption and desorption performance of hydrogen storage vessel were analyzed. The results indicate that the hydrogen storage vessels with internal fins or spiral tubes can significantly improve the hydrogen absorption/desorption performance. The temperature cloud diagram shows that the heat transfer in the structure of internal wall fins of vessel is from the heat exchange wall to the center of the container, while the heat transfer in the vessel with spiral tubes is from spiral tube to all sides which makes the metal hydride hydrogen storage vessel with spiral tube have higher heat transfer efficiency. Compared with the basic model, the time required to reach 90% of the maximum hydrogen absorption/desorption capacity of the hydrogen storage vessel with spiral tube is reduced by 31.58% and 31.12% respectively.
关键词
储氢合金 /
换热翅片 /
传热性能 /
储氢容器 /
螺旋管
Key words
hydrogen storage alloy /
heat exchange fins /
heat transfer performance /
hydrogen storage vessel /
spiral tube
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曹湘洪. 氢能开发与利用中的关键问题[J]. 石油炼制与化工, 2017, 48(9): 1-6.
CAO X H.Key to development and application of hydrogen energy[J]. Petroleum processing and petrochemicals, 2017, 48(9): 1-6.
[2] NASHCHEKIN M D, MINKO K B, ARTEMOV V I.Numerical analysis of constructive and regime parameter effects on the efficiency of metal hydride systems for hydrogen purification[J]. Case studies in thermal engineering, 2019, 14: 100485.
[3] 刘云, 景朝俊, 马则群, 等. 固体储氢新材料的研究进展[J]. 化工新型材料, 2021, 49(9): 11-14, 19.
LIU Y, JING C J, MA Z Q, et al.Research progress on new solid-state hydrogen storage material[J]. New chemical materials, 2021, 49(9): 11-14, 19.
[4] 张晓飞, 蒋利军, 叶建华, 等. 固态储氢技术的研究进展[J]. 太阳能学报, 2022, 43(6): 345-354.
ZHANG X F, JIANG L J, YE J H, et al.Research progress of solid-state hydrogen storage technology[J]. Acta energiae solaris sinica, 2022, 43(6): 345-354.
[5] SREERAJ R, AADHITHIYAN A K, ANBARASU S.Integration of thermal augmentation methods in hydride beds for metal hydride based hydrogen storage systems: review and recommendation[J]. Journal of energy storage, 2022, 52: 105039.
[6] YE Y, LU J F, DING J, et al.Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank[J]. Applied energy, 2020, 278: 115682.
[7] 鲍泽威, 朱泽志, 牟晓锋, 等. 金属氢化物储氢反应器放氢特性的数值模拟[J]. 工程科学与技术, 2021, 53(2): 151-157.
BAO Z W, ZHU Z Z, MOU X F, et al.Numerical simulation of hydrogen desorption characteristics in metal hydride reactor for hydrogen storage[J]. Advanced engineering sciences, 2021, 53(2): 151-157.
[8] FRENI A, CIPITI F, CACCIOLA G.Finite element-based simulation of a metal hydride-based hydrogen storage tank[J]. International journal of hydrogen energy, 2009, 34(20): 8574-8582.
[9] GKANAS E I, GRANT D M, KHZOUZ M, et al.Efficient hydrogen storage in up-scale metal hydride tanks as possible metal hydride compression agents equipped with aluminium extended surfaces[J]. International journal of hydrogen energy, 2016, 41(25): 10795-10810.
[10] BUSQUÉ R,TORRES R,GRAU J, et al.Effect of metal hydride properties in hydrogen absorption through 2D-axisymmetric modeling and experimental testing in storage canisters[J]. International journal of hydrogen energy, 2017, 42(30): 19114-19125.
[11] CUI Y H, ZHANG Z L, ZENG X G, et al.Numerical analysis of heat and mass transfer during hydrogen absorption in metal hydride beds with a novel peridynamic model[J]. Applied thermal engineering, 2022, 209:118294.
[12] ASKRI F.Study of two-dimensional and dynamic heat and mass transfer in a metal-hydrogen reactor[J]. International journal of hydrogen energy, 2003, 28(5): 537-557.
[13] BEN NASRALLAH S, JEMNI A.Heat and mass transfer models in metal-hydrogen reactor[J]. International journal of hydrogen energy, 1997, 22(1): 67-76.
[14] SANDROCK G, THOMAS G.The IEA/DOE/SNL on-line hydride databases[J]. Applied physics A, 2001, 72(2): 153-155.
[15] CHUNG C A, HO C J.Thermal-fluid behavior of the hydriding and dehydriding processes in a metal hydride hydrogen storage canister[J]. International journal of hydrogen energy, 2009, 34(10): 4351-4364.
[16] YANG F S, MENG X Y, DENG J Q, et al.Identifying heat and mass transfer characteristics of metal hydride reactor during adsorption-parameter analysis and numerical study[J]. International journal of hydrogen energy, 2008, 33(3): 1014-1022.
[17] JEMNI A, BEN NASRALLAH S, LAMLOUMI J.Experimental and theoretical study of ametal-hydrogen reactor[J]. International journal of hydrogen energy, 1999, 24(7): 631-644.
[18] TONG L, XIAO J S, YANG T Q, et al.Complete and reduced models for metal hydride reactor with coiled-tube heat exchanger[J]. International journal of hydrogen energy, 2019, 44(30): 15907-15916.
基金
青岛市关键技术攻关及产业化示范类(23-1-3-hygg-16-hy)