制氢变流器弱电网并网稳定性分析

井延伟, 梅春晓, 谭建鑫, 张雷, 张一博

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 267-275.

PDF(3801 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3801 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 267-275. DOI: 10.19912/j.0254-0096.tynxb.2022-1877

制氢变流器弱电网并网稳定性分析

  • 井延伟1, 梅春晓1, 谭建鑫1, 张雷2, 张一博3
作者信息 +

STABILITY STUDY OF WATER ELECTROLYSIS HYDROGEN PRODUCTION CONVERTER CONNECTED TO WEAK GRID

  • Jing Yanwei1, Mei Chunxiao1, Tan Jianxin1, Zhang Lei2, Zhang Yibo3
Author information +
文章历史 +

摘要

该文针对弱电网下大规模可再生能源制氢系统稳定性进行研究。基于制氢电解槽的负载特性建立基于三电平拓扑结构的制氢变流器模型以及对应的控制策略。并基于系统模型建立制氢系统在弱电网下的小信号模型,以分析大规模电解水制氢系统的稳定性与相关因素的关系,包括锁相环带宽、交流电流环带宽、电网强度等。搭建2 MW制氢变流器的弱电网模拟实验平台,验证弱电网条件下不同控制参数对制氢变流器稳定性的影响,得到了与理论分析一致的结果。

Abstract

Hydrogen production via wind energy and photovoltaics represents an emerging research frontier aimed at integrating novel energy consumption methodologies with hydrogen generation. The presence of a renewable weak grid contributes to system instability. The stability of large-scale renewable energy hydrogen production systems interconnected with a weak grid is focused. The modeling and control of a hydrogen production converter employing a three-level topology is established. The system’s stability is influenced by factors such as phase-locked loop (PLL) parameters, the bandwidth of the AC current loop, and LCL filter parameters. To ascertain the impact of various control parameters on stability, a weak grid platform featuring a 2 MW hydrogen production converter was developed in a laboratory setting. The empirical findings corroborate the theoretical analysis.

关键词

可再生能源 / 制氢 / 新能源 / 变流器 / 系统稳定性 / 控制器参数

Key words

renewable energy / hydrogen production / renewable energy resources / converter / system stability / controller's parameters

引用本文

导出引用
井延伟, 梅春晓, 谭建鑫, 张雷, 张一博. 制氢变流器弱电网并网稳定性分析[J]. 太阳能学报. 2024, 45(5): 267-275 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1877
Jing Yanwei, Mei Chunxiao, Tan Jianxin, Zhang Lei, Zhang Yibo. STABILITY STUDY OF WATER ELECTROLYSIS HYDROGEN PRODUCTION CONVERTER CONNECTED TO WEAK GRID[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 267-275 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1877
中图分类号: TK91   

参考文献

[1] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L,LIANG Z H,LI G H,et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[2] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R,PENG J,FU B,et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[3] 周京华, 孟祥飞, 陈亚爱, 等. 基于新能源发电的电解水制氢直流电源研究[J]. 太阳能学报, 2022, 43(6): 389-397.
ZHOU J H,MENG X F,CHEN Y A,et al.Research on DC power supply for hydrogen production from electrolytic water based on new energy generation[J]. Acta energiae solaris sinica, 2022, 43(6): 389-397.
[4] 张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75.
ZHANG Y,PENG Y G,WEI W.Coordination control for PV, storage and hydrogen system considering hydrogen energy conversion efficiency[J]. Acta energiae solaris sinica, 2021, 42(11): 67-75.
[5] 谢小荣, 刘华坤, 贺静波, 等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报, 2016, 36(9): 2366-2372.
XIE X R, LIU H K, HE J B, et al.Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems[J]. Proceedings of the CSEE, 2016, 36(9): 2366-2372.
[6] 张旸, 陈新, 王昀, 等. 弱电网下并网逆变器的阻抗相角动态控制方法[J]. 电工技术学报, 2017, 32(1): 97-106.
ZHANG Y, CHEN X, WANG Y, et al.Impedance-phased dynamic control method of grid-connected inverters under weak grid condition[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 97-106.
[7] 谢小荣, 王路平, 贺静波, 等. 电力系统次同步谐振/振荡的形态分析[J]. 电网技术, 2017, 41(4): 1043-1049.
XIE X R, WANG L P, HE J B, et al.Analysis of subsynchronous resonance/oscillation types in power systems[J]. Power system technology, 2017, 41(4): 1043-1049.
[8] 胡祺, 付立军, 马凡,等. 弱电网下基于锁相控制并网变换器小扰动同步稳定分析[J]. 中国电机工程学报, 2021, 41(1): 98-108, 401.
HU Q, FU L J, MA F, et al.Small signal synchronizing stability analysis of PLL-based VSC connected to weak AC grid[J]. Proceedings of the CSEE, 2021, 41(1): 98-108, 401.
[9] 孙振奥, 杨子龙, 王一波, 等. 光伏并网逆变器集群的谐振原因及其抑制方法[J]. 中国电机工程学报, 2015, 35(2): 418-425.
SUN Z A, YANG Z L, WANG Y B, et al.The cause analysis and suppression method of resonances in clustered grid-connected photovoltaic inverters[J]. Proceedings of the CSEE, 2015, 35(2): 418-425.
[10] 陈新, 张旸, 王赟程. 基于阻抗分析法研究光伏并网逆变器与电网的动态交互影响[J]. 中国电机工程学报, 2014, 34(27): 4559-4567.
CHEN X, ZHANG Y, WANG Y C.A study of dynamic interaction between PV grid-connected inverters and grid based on the impedance analysis method[J]. Proceedings of the CSEE, 2014, 34(27): 4559-4567.
[11] 宋瑞华, 郭剑波, 李柏青, 等. 基于输入导纳的直驱风电次同步振荡机理与特性分析[J]. 中国电机工程学报, 2017, 37(16): 4662-4670, 4891.
SONG R H, GUO J B, LI B Q, et al.Mechanism and characteristics of subsynchronous oscillation in direct-drive wind power generation system based on input-admittance analysis[J]. Proceedings of the CSEE, 2017, 37(16): 4662-4670, 4891.
[12] 李光辉, 王伟胜, 刘纯, 等. 直驱风电场接入弱电网宽频带振荡机理与抑制方法(一):宽频带阻抗特性与振荡机理分析[J]. 中国电机工程学报, 2019, 39(22): 6547-6562.
LI G H, WANG W S, LIU C, et al.Mechanism analysis and suppression method of wideband oscillation of PMSG wind farms connected to weak grid(part Ⅰ): analysis of wideband impedance characteristics and oscillation mechanism[J]. Proceedings of the CSEE, 2019, 39(22): 6547-6562.
[13] 刘巨, 姚伟, 文劲宇. 考虑PLL和接入电网强度影响的双馈风机小干扰稳定性分析与控制[J]. 中国电机工程学报, 2017, 37(11): 3162-3173, 3371.
LIU J, YAO W, WEN J Y.Small signal stability analysis and control of double-fed induction generator considering influence of PLL and power grid strength[J]. Proceedings of the CSEE, 2017, 37(11): 3162-3173, 3371.
[14] 杨苓, 陈燕东, 周乐明, 等. 弱电网下锁相环对三相 LCL型并网逆变器小扰动建模影响及稳定性分析[J]. 中国电机工程学报, 2018, 38(13): 3792-3804, 4020.
YANG L, CHEN Y D, ZHOU L M, et al.Effect of phase locked loop on the small-signal perturbation modeling and stability analysis for three-phase LCL-type grid-connected inverter in weak grid[J]. Proceedings of the CSEE, 2018, 38(13): 3792-3804, 4020.
[15] 王国宁, 杜雄, 邹小明, 等. 用于三相并网逆变器稳定性分析的自导纳和伴随导纳建模[J]. 中国电机工程学报, 2017, 37(14): 3973-3981, 4275.
WANG G N, DU X, ZOU X M, et al.Self and accompanying admittance model for three-phase grid-tied inverter stability analysis[J]. Proceedings of the CSEE, 2017,37(14): 3973-3981, 4275.
[16] 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350.
CHEN M P,REN J X,LI F Q.Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta energiae solaris sinica, 2023, 44(3): 344-350.
[17] 赵宇洋, 赵浩然, 谭建鑫, 等. 面向风电制氢的超短期组合功率预测[J]. 太阳能学报, 2023, 44(3): 162-168.
ZHAO Y Y,ZHAO H R,TAN J X,et al.Combined ultra-short-term power prediction for wind power hydrogen production technology[J]. Acta energiae solaris sinica, 2023, 44(3): 162-168.
[18] 卢捷, 于立军, 郑培, 等. 风氢耦合系统超前控制策略研究[J]. 太阳能学报, 2022, 43(3): 53-60.
LU J,YU L J,ZHENG P, et al.Research on advanced control strategy of wind hydrogen coupling system[J]. Acta energiae solaris sinica, 2022, 43(3): 53-60.
[19] 潘尔生, 王智冬, 王栋, 等. 基于锁相环同步控制的双馈风机弱电网接入稳定性分析[J]. 高电压技术, 2020, 46(1): 170-178.
PAN E S, WANG Z D, WANG D, et al.Stability analysis of phase-locked loop synchronized DFIGs in weak grids[J]. High voltage engineering, 2020, 46(1): 170-178.
[20] 汪宁渤. 大规模风电送出与消纳[M]. 北京: 中国电力出版社, 2012.
WANG N B.Large-scale wind power transmission and consumption[M]. Beijing: China Electric Power Press, 2012.
[21] 李建林, 李光辉, 梁丹曦, 等. “双碳目标”下可再生能源制氢技术综述及前景展望[J]. 分布式能源, 2021, 6(5): 1-9.
LI J L, LI G H, LIANG D X, et al.Review and prospect of hydrogen production technology from renewable energy under targets of carbon peak and carbon neutrality[J]. Distributed energy, 2021, 6(5): 1-9.
[22] 张丽平. 分布式风氢混合能源系统建模及功率分配策略研究[D]. 石家庄: 河北科技大学, 2020.
ZHANG L P.Research on modeling and power allocation strategy of distributed wind-hydrogen hybrid energy system[D]. Shijiazhuang: Hebei University of Science and Technology, 2020.
[23] 李洋洋, 邓欣涛, 古俊杰, 等. 碱性水电解制氢系统建模综述及展望[J]. 汽车工程, 2022, 44(4): 567-582.
LI Y Y, DENG X T, GU J J, et al.Comprehensive review and prospect of the modeling of alkaline water electrolysis system for hydrogen production[J]. Automotive engineering, 2022, 44(4): 567-582.
[24] 阮景昕, 王跃社, 张俊峰, 等. 基于氢储能的风光氢能源系统能质转换优化策略[J]. 工程热物理学报, 2023, 44(2): 413-421.
RUAN J X, WANG Y S, ZHANG J F, et al.Energy-mass conersion optimization strategy of wind-solar-hydrogen energy system based on hydrogen energy storage[J]. Journal of engineering thermophysics, 2023, 44(2): 413-421.

PDF(3801 KB)

Accesses

Citation

Detail

段落导航
相关文章

/