为模拟海域真实环境,在三轴应力、氯化钠体系以及水合物储层富水状态的条件下,开展针对氯化钠体系、储层初始饱和度以及置换压应力对液态CO2置换开采海域天然气水合物的实验。研究表明:在三轴应力以及孔隙度约46.70%的条件下,氯化钠体系对CH4置换效率影响较小,但对CO2水合物合成表现出抑制作用;储层初始饱和度与CH4置换效率之间是负相关关系且高的储层含水率更有利于CO2封存;CH4置换效率随着置换压应力的增长有一定幅度的提高,置换压应力的增大为CO2水合物合成提供了高的驱动力,进而提高了CO2封存效率。
Abstract
In order to simulate the real environment in the sea area, these experiments were carried out to study the effects of sodium chloride, initial saturation of the reservoir and replacement compressive stress on the liquid CO2 replacement-exploitation of natural gas hydrate in the sea area under the rich water condition. This study shows that under the condition of triaxial stress and porosity about 46.70%, the sodium chloride system has little effect on the CH4 replacement efficiency, but it inhibits the CO2 hydrate synthesis. There is a negative correlation between initial reservoir saturation and CH4 replacement efficiency. In addition, a high reservoir water content is more favorable for CO2 storage. The CH4 replacement efficiency increases with the increasing replacement compressive stress, the increase of replacement compressive stress provides a high driving force for the CO2 hydrate formation, thereby improving the CO2 sequestration efficiency.
关键词
天然气水合物 /
二氧化碳 /
甲烷 /
氯化钠 /
置换 /
三轴应力 /
储层初始饱和度
Key words
natural gas hydrate /
carbon dioxide /
methane /
sodium chloride /
replacement /
triaxial stress /
initial reservoir saturation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHAO J F, LIU Y L, GUO X W, et al.Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization[J]. Applied energy, 2020, 260: 114275.
[2] RUPPEL C D, KESSLER J D.The interaction of climate change and methane hydrates[J]. Reviews of geophysics, 2017, 55(1): 126-168.
[3] MAX M D.Natural gas hydrate: in oceanic and permafrost environments[M]. Dordrecht: Kluwer Academic Publishers, 2003.
[4] 黄炳香, 蔡青旺, 赵兴龙. 基于储层保护的天然气水合物间接置换开采方法[J]. 湖南科技大学学报(自然科学版), 2021, 36(1): 1-9.
HUANG B X, CAI Q W, ZHAO X L.Indirect replacement mining method of natural gas hydrates based on reservoir protection[J]. Journal of Hunan University of Science & Technology(natural science edition), 2021, 36(1): 1-9.
[5] EBINUMA T. Method for dumping and disposing of carbon dioxide gas and apparatus therefor: US5261490[P].1993-11-16.
[6] OHGAKI K, TAKANO K, SANGAWA H, et al.Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-CH4 mixed hydrate system[J]. Journal of chemical engineering of Japan, 1996, 29(3): 478-483.
[7] YOON J H, KAWAMURA T, YAMAMOTO Y, et al.Transformation of methane hydrate to carbon dioxide hydrate: in situ Raman spectroscopic observations[J]. Journal of physical chemistry A, 2004, 108(23): 5057-5059.
[8] OTA M, SAITO T, AIDA T, et al.Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2[J]. AIChE journal, 2007, 53(10): 2715-2721.
[9] OTA M, ABE Y, WATANABE M, et al. Methane recovery from methane hydrate using pressurized CO2[J]. Fluid phase equilibria, 2005, 228/229: 553-559.
[10] YUAN Q, WANG X H, DANDEKAR A, et al.Replacement of methane from hydrates in porous sediments with CO2-in-water emulsions[J]. Industrial & engineering chemistry research, 2014, 53(31): 12476-12484.
[11] SCHODERBEK D, MARTIN K L, HOWARD J, et al.North slope hydrate fieldtrial: CO2/CH4 exchange[C]//OTC Arctic Technology Conference. Houston, Texas, USA, 2012.
[12] SIVARAMAN R.The potential role of hydrate technology in sequestering carbon dioxide[J]. Gas tips, 2003, 9(4): 4-7.
[13] YUAN Q, SUN C Y, LIU B, et al.Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2[J]. Energy conversion and management, 2013, 67: 257-264.
[14] YIN Z Y, MORIDIS G, LINGA P.On the importance of phase saturation heterogeneity in the analysis of laboratory studies of hydrate dissociation[J]. Applied energy, 2019, 255: 113861.
[15] WAITE W F, SANTAMARINA J C, CORTES D D, et al.Physical properties of hydrate-bearing sediments[J]. Reviews of geophysics, 2009, 47(4): 465-484.
[16] 王金宝, 郭绪强, 陈光进, 等. 二氧化碳置换法开发天然气水合物的实验研究[J]. 高校化学工程学报, 2007, 21(4): 715-719.
WANG J B, GUO X Q, CHEN G J, et al.Experimental research on methane recovery from natural gas hydrate by carbon dioxide replacement[J]. Journal of chemical engineering of Chinese universities, 2007, 21(4): 715-719.
[17] 王小文. 甲烷水合物 CO2置换开采影响因素实验研究[D]. 东营: 中国石油大学(华东), 2014.
WANG X W.Experimental study on the influence factors of exploiting methane hydrate by replacement with CO2[D]. Dongying: China University of Petroleum(Huadong), 2014.
[18] 高强. 砂质水合物降压开采影响因素与方法的实验研究[D]. 太原: 太原理工大学, 2021.
GAO Q.Experimental studies on influence factors and production strategies of depressurization in sandy sediments[D]. Taiyuan: Taiyuan University of Technology, 2021.
[19] YEZDIMER E M, CUMMINGS P T, CHIALVO A A.Determination of the Gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation[J]. The journal of physical chemistry A, 2002, 106(34): 7982-7987.
[20] FAN S S, WANG X, WANG Y H, et al.Recovering methane from quartz sand-bearing hydrate with gaseous CO2[J]. Journal of energy chemistry, 2017, 26(4): 655-659.
[21] WANG T, ZHANG L X, SUN L J, et al.Methane recovery and carbon dioxide storage from gas hydrates in fine marine sediments by using CH4/CO2 replacement[J]. Chemical engineering journal, 2021, 425: 131562.
基金
科技部地球深部钻探与深地资源开发国际联合研究中心(DEDRD-2022-05); 博士后面上71批基金(2022M712337); 山西省回国留学人员科研资助项目(2020-046); 山西省科技创新人才团队项目