基于残差网络的风电机组基础健康监测数据修复研究

魏焕卫, 宋志鑫, 雷树立, 惠俊梅, 郑晓

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 143-150.

PDF(3200 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3200 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 143-150. DOI: 10.19912/j.0254-0096.tynxb.2022-1884

基于残差网络的风电机组基础健康监测数据修复研究

  • 魏焕卫1~3, 宋志鑫1,2, 雷树立1,2, 惠俊梅4, 郑晓1~3
作者信息 +

RESEARCH ON HEALTH MONITORING DATA RESTORATION OF WIND TURBINE FOUNDATION BASED ON RESIDUAL NETWORK

  • Wei Huanwei1~3, Song Zhixin1,2, Lei Shuli1,2, Hui Junmei4, Zheng Xiao1~3
Author information +
文章历史 +

摘要

为精准有效地修复连续性异常数据,提出一种基于残差块优化卷积神经网络的残差网络数据修复模型。以乳山风电场的风电机组基础健康监测数据为例对模型进行工程验证。同时选取具有修复功能的多种模型对实际异常数据进行修复验证,并对所有模型的性能以及自身的修复精度进行对比分析。结果表明:ResNet模型避免了FCN以及CNN模型存在的缺陷,提高了数据修复的精度;ResNet模型适用于缺失或异常比例低于30%的数据修复;ResNet模型修复实例的结果符合数据变化趋势,能较好吻合监测数据的原始曲线。

Abstract

To accurately and effectively repair the abnormal data of the continuous monitoring dataset, a residual network data repairing (ResNet) model was proposed based on residual block optimized convolutional neural network in this paper. The engineering validation of the proposed ResNet model was carried out by using the health monitoring data of the foundation of the onshore wind turbine at Rushan Wind Farm. Some models with repair functions were also selected to repair the abnormal data of the monitoring dataset. According to the results of the repaired monitoring dataset, the comparative analysis was conducted on the repair performance and accuracy of these models. The results reveals that comparing with FCN and CNN model, ResNet model exhibits a rather high accuracy of abnormal data repair; the ResNet model is more suitable for repairing datasets where the ratio of missing or abnormal data is less than 30%; the repaired results based on the ResNet model can fit better to the original curve of the continuous monitoring data,which shows a good agreement with the monitored trend.

关键词

风电机组 / 深度学习 / 健康监测 / 数据修复

Key words

wind turbines / deep learning / health monitoring / data restoration

引用本文

导出引用
魏焕卫, 宋志鑫, 雷树立, 惠俊梅, 郑晓. 基于残差网络的风电机组基础健康监测数据修复研究[J]. 太阳能学报. 2024, 45(4): 143-150 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1884
Wei Huanwei, Song Zhixin, Lei Shuli, Hui Junmei, Zheng Xiao. RESEARCH ON HEALTH MONITORING DATA RESTORATION OF WIND TURBINE FOUNDATION BASED ON RESIDUAL NETWORK[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 143-150 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1884
中图分类号: TU476    TP183   

参考文献

[1] 陈韬, 杨三元. 海上风电基础健康监测技术[J]. 船舶工程, 2022, 44(增刊1): 47-50, 100.
CHEN T, YANG S Y.Offshore wind turbine foundation health monitoring technology[J]. Ship engineering, 2022, 44(S1): 47-50, 100.
[2] BERTSIMAS D, PAWLOWSKI C, ZHUO Y D.From predictive methods to missing data imputation: an optimization approach[J]. Journal of machine learning research, 2017, 18(1): 7133-7171.
[3] AVANZI F, ZHENG Z S, COOGAN A, et al.Gap-filling snow-depth time-series with Kalman filtering-smoothing and expectation maximization: proof of concept using spatially dense wireless-sensor-network data[J]. Cold regions science and technology, 2020, 175: 103066.
[4] SHAHBAZI H, KARIMI S, HOSSEINI V, et al.A novel regression imputation framework for Tehran air pollution monitoring network using outputs from WRF and CAMx models[J]. Atmospheric environment, 2018, 187: 24-33.
[5] 陈娟, 王献雨, 罗玲玲, 等. 缺失值填补效果: 机器学习与统计学习的比较[J]. 统计与决策, 2020, 36(17): 28-32.
CHEN J, WANG X Y, LUO L L, et al.Comparison of machine learning and statistical learning in the imputation of missing values[J]. Statistics & decision, 2020, 36(17): 28-32.
[6] 李董, 迟家俊, 相博, 等. 基于SMOTE和KNN的石油数据缺失填充算法[J]. 数学的实践与认识, 2019, 49(17): 187-195.
LI D, CHI J J, XIANG B, et al.Missing oil value filling algorithm based on KNN and SMOTE[J]. Mathematics in practice and theory, 2019, 49(17): 187-195.
[7] 陈小娟, 张慧萍, 贺红艳. 通信网络链路非平稳数据自动修复方法[J]. 计算机仿真, 2022, 39(2): 491-495.
CHEN X J, ZHANG H P, HE H Y.Automatic repair method for non-stationary data of communication network link[J]. Computer simulation, 2022, 39(2): 491-495.
[8] 王永明, 刘兴龙, 桑凌志. 基于最小二乘支持向量机的AIS数据修复方法[J]. 上海海事大学学报, 2018, 39(4): 82-89.
WANG Y M, LIU X L, SANG L Z.AIS data restoration method based on least squares support vector machine[J]. Journal of Shanghai Maritime University, 2018, 39(4): 82-89.
[9] 栗然, 马涛, 张潇, 等. 基于卷积长短期记忆神经网络的短期风功率预测[J]. 太阳能学报, 2021, 42(6): 304-311.
LI R, MA T, ZHANG X, et al.Short-term wind power prediction based on convolutional long-short-term memory neural networks[J]. Acta energiae solaris sinica, 2021, 42(6): 304-311.
[10] 曾国治, 魏子清, 岳宝, 等. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261.
ZENG G Z, WEI Z Q, YUE B, et al.Energy consumption prediction of office buildings based on CNN-RNN combined model[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261.
[11] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 770-778.
[12] 雷春丽, 薛林林, 焦孟萱, 等. 结合改进ResNet与迁移学习的风力机滚动轴承故障诊断方法[J]. 太阳能学报, 2023, 44(6): 436-444.
LEI C L, XUE L L, JIAO M X, et al.Fault diagnosis method of wind turbines rolling bearing based on improved ResNet and transfer learning[J]. Acta energiae solaris sinica, 2023, 44(6): 436-444.
[13] 谢晓凯, 罗尧治, 张楠, 等. 基于神经网络的大跨度空间钢结构应力实测缺失数据修复方法研究[J]. 空间结构, 2019, 25(3): 38-44.
XIE X K, LUO Y Z, ZHANG N, et al.Missing data reconstruction in stress monitoring of steel spatial structures using neural network techniques[J]. Spatial structures, 2019, 25(3): 38-44.
[14] LEE D H, CHEON E, LIM H H, et al.An artificial neural network model to predict debris-flow volumes caused by extreme rainfall in the central region of South Korea[J]. Engineering geology, 2021, 281: 105979.
[15] 林涛, 刘航鹏, 赵参参, 等. 基于SSA-PSO-ANFIS的短期风速预测研究[J]. 太阳能学报, 2021, 42(3): 128-134.
LIN T, LIU H P, ZHAO C C, et al.Short-term wind speed prediction based on SSA-PSO-ANFIS[J]. Acta energiae solaris sinica, 2021, 42(3): 128-134.
[16] 郑红, 程云辉, 胡阳生, 等. 基于MLP&ST模型的空气质量预测[J]. 应用科学学报, 2022, 40(2): 302-315.
ZHENG H, CHENG Y H, HU Y S, et al.Air quality prediction based on MLP&ST model[J]. Journal of applied sciences, 2022, 40(2): 302-315.
[17] 李大中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200-205.
LI D Z, LI Y Y.Ultra-short term wind power prediction based on deep learning and error correction[J]. Acta energiae solaris sinica, 2021, 42(12): 200-205.
[18] CHEN L, ZEN S.A multiple linear regression prediction of concrete compressive strength based on physical properties of electric arc furnace oxidizing slag[J]. International journal of applied science and engineering, 2010, 7(2): 153-158.
[19] 谷宇峰, 张道勇, 鲍志东. 测井资料PSO-XGBoost渗透率预测[J]. 石油地球物理勘探, 2021, 56(1): 26-37, 4-5.
GU Y F, ZHANG D Y, BAO Z D. Permeability prediction using PSO-XGBoost based on logging data[J]. Oil geophysical prospecting, 2021, 56(1): 26-37, 4-5.

基金

国家自然科学基金(41272281); 山东省自然科学基金(ZR2019MEE021)

PDF(3200 KB)

Accesses

Citation

Detail

段落导航
相关文章

/