考虑负荷特性的光伏消纳能力的模拟与评估

孙万通, 陈众, 陈慧霞, 徐翼, 郎坤

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 475-481.

PDF(2398 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2398 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 475-481. DOI: 10.19912/j.0254-0096.tynxb.2022-1889

考虑负荷特性的光伏消纳能力的模拟与评估

  • 孙万通1, 陈众1, 陈慧霞1, 徐翼1, 郎坤2
作者信息 +

SIMULATION AND EVALUATION OF PHOTOVOITAIC ABSORPTION CAPACITY CONSIDERING LOAD CHARACTERRISTICS

  • Sun Wantong1, Chen Zhong1, Chen Huixia1, Xu Yi1, Lang Kun2
Author information +
文章历史 +

摘要

针对目前在配电网光伏消纳能力评估过程中不能全面考虑电力系统中负荷特性多样化对光伏消纳能力影响的不足,提出一种考虑负荷运行中的实际情况,光伏消纳模拟与概率评估的方法。首先采用支持向量机-随机森林算法对负荷数据进行清洗,再采用改进谱聚类算法对不同类型的负荷特性进行聚类分析,然后基于场景分析法选取不同负荷的类型曲线作为节点处负荷数据,最后基于蒙特卡洛模拟法和均匀抽样法进行光伏消纳方案随机模拟与消纳能力近似评估。基于IEEE 33节点系统算例分析,对有无考虑负荷特性的抽样结果进行对比,有效验证了所述方法的适用性。

Abstract

In view of the shortcomings that the influence of the diversification of load characteristics on the photovoltaic absorption capacity of the power system cannot be fully considered in the process of evaluating the photovoltaic absorption capacity of the distribution network, a method of photovoltaic absorption simulation and probability evaluation considering the actual situation in load operation is proposed. Firstly, the support vector machine-random forest algorithm is used to clean the load data, and then the improved spectral clustering algorithm is used to cluster the different types of load characteristics. Furtherly, the type curves of different loads are selected as the load data at nodes based on the scenario analysis method. Finally, based on the Monte Carlo simulation method and the uniform sampling method, the stochastic simulation of the photovoltaic absorption scheme and the approximate evaluation of the absorption capacity are carried out. Based on the example analysis of IEEE33 node system, the sampling results considering the load characteristics are compared, which effectively verifies the applicability of the proposed method.

关键词

配电网 / 光伏 / 负荷 / 改进谱聚类算法 / 蒙特卡洛模拟法 / 均匀抽样

Key words

electric power distribution / photovoltaic / load / improved spectral clustering algorithm / Monte Carlo simulation / uniform sampling

引用本文

导出引用
孙万通, 陈众, 陈慧霞, 徐翼, 郎坤. 考虑负荷特性的光伏消纳能力的模拟与评估[J]. 太阳能学报. 2024, 45(4): 475-481 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1889
Sun Wantong, Chen Zhong, Chen Huixia, Xu Yi, Lang Kun. SIMULATION AND EVALUATION OF PHOTOVOITAIC ABSORPTION CAPACITY CONSIDERING LOAD CHARACTERRISTICS[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 475-481 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1889
中图分类号: TM715   

参考文献

[1] 贺新禹, 陈众, 刘星, 等. 含分布式光伏发电的中压配电网电压控制策略[J]. 电测与仪表, 2022, 59(5): 142-148.
HE X Y, CHEN Z, LIU X, et al.Voltage control strategy for medium voltage distribution network with distributed photovoltaic generators[J]. Electrical measurement & instrumentation, 2022, 59(5): 142-148.
[2] 单英浩, 付青, 耿炫, 等. 基于改进BP-SVM-ELM与粒子化SOM-LSF的微电网光伏发电组合预测方法[J]. 中国电机工程学报, 2016, 36(12): 3334-3343.
SHAN Y H, FU Q, GENG X, et al.Combined forecasting of photovoltaic power generation in microgrid based on the improved BP-SVM-ELM and SOM-LSF with particlization[J]. Proceedings of the CSEE, 2016, 36(12): 3334-3343.
[3] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
KANG C Q, YAO L Z.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 2-11.
[4] 赵腾, 王林童, 张焰, 等. 采用互信息与随机森林算法的用户用电关联因素辨识及用电量预测方法[J]. 中国电机工程学报, 2016, 36(3): 604-614.
ZHAO T, WANG L T, ZHANG Y, et al.Relation factor identification of electricity consumption behavior of users and electricity demand forecasting based on mutual information and random forests[J]. Proceedings of the CSEE, 2016, 36(3): 604-614.
[5] 丁明, 刘盛. 基于遗传算法的多个光伏电源极限功率计算[J]. 电网技术, 2013, 37(4): 922-926.
DING M, LIU S.Calculation of maximum penetration level of multi PV generation systems based on genetic algorithm[J]. Power system technology, 2013, 37(4): 922-926.
[6] HOKE A, BUTLER R, HAMBRICK J, et al.Steady-state analysis of maximum photovoltaic penetration levels on typical distribution feeders[J]. IEEE transactions on sustainable energy, 2013, 4(2): 350-357.
[7] EL-SHIMY M, SHARAF A, KHAIRY H, et al.Reduced-order modelling of solar-PV generators for small-signal stability assessment of power systems and estimation of maximum penetration levels[J]. IET generation, transmission & distribution, 2018, 12(8): 1838-1847.
[8] AL-SAADI H, ZIVANOVIC R, AL-SARAWI S F. Probabilistic hosting capacity for active distribution networks[J]. IEEE transactions on industrial informatics, 2017, 13(5): 2519-2532.
[9] CHEN X, WU W C, ZHANG B M.Robust capacity assessment of distributed generation in unbalanced distribution networks incorporating ANM techniques[J]. IEEE transactions on sustainable energy, 2018, 9(2): 651-663.
[10] 刘科研, 盛万兴, 马晓晨, 等. 基于多种群遗传算法的分布式光伏接入配电网规划研究[J]. 太阳能学报, 2021, 42(6): 146-155.
LIU K Y, SHENG W X, MA X C, et al.Planning research of distributed photovoltaic source access distribution network based on multi-population genetic algorithm[J]. Acta energiae solaris sinica, 2021, 42(6): 146-155.
[11] 董逸超, 王守相, 闫秉科. 配电网分布式电源接纳能力评估方法与提升技术研究综述[J]. 电网技术, 2019, 43(7): 2258-2266.
DONG Y C, WANG S X, YAN B K.Review on evaluation methods and improvement techniques of DG hosting capacity in distribution network[J]. Power system technology, 2019, 43(7): 2258-2266.
[12] 汤奕, 鲁针针, 伏祥运. 居民主动负荷促进分布式电源消纳的需求响应策略[J]. 电力系统自动化, 2015, 39(24): 49-55.
TANG Y, LU Z Z, FU X Y.Demand response strategies for promoting consumption of distributed power generation with residential active loads[J]. Automation of electric power systems, 2015, 39(24): 49-55.
[13] 徐志成, 赵波, 丁明, 等. 基于电压灵敏度的配电网光伏消纳能力随机场景模拟及逆变器控制参数优化整定[J]. 中国电机工程学报, 2016, 36(6): 1578-1587.
XU Z C, ZHAO B, DING M, et al.Photovoltaic hosting capacity evaluation of distribution networks and inverter parameters optimization based on node voltage sensitivity[J]. Proceedings of the CSEE, 2016, 36(6): 1578-1587.
[14] 张晓英, 汪彬, 王琨, 等. 考虑负荷随机性的风电消纳能力概率评估[J]. 太阳能学报, 2019, 40(2): 341-347.
ZHANG X Y, WANG B, WANG K, et al.Probabilistic assessment of wind power accommodation considering load randomness[J]. Acta energiae solaris sinica, 2019, 40(2): 341-347.
[15] 王雷, 张瑞青, 盛伟, 等. 基于支持向量机的回归预测和异常数据检测[J]. 中国电机工程学报, 2009, 29(8): 92-96.
WANG L, ZHANG R Q, SHENG W, et al.Regression forecast and abnormal data detection based on support vector regression[J]. Proceedings of the CSEE, 2009, 29(8): 92-96.
[16] 吴俊杰, 赵鹏. 非线性噪声数据集上基于随机森林的空缺值填补算法[J]. 计算机应用与软件, 2013, 30(7): 51-53.
WU J J, ZHAO P.A missing values filling algorithm based on random forest for non-linear noisy datasets[J]. Computer applications and software, 2013, 30(7): 51-53.
[17] 赵曌, 丁广太, 樊明磊, 等. 融合LBP纹理和局部灰度特征的材料图像分割[J]. 计算机技术与发展, 2016, 26(10): 11-16.
ZHAO Z, DING G T, FAN M L, et al.Material image segmentation combined LBP texture and local gray level feature[J]. Computer technology and development, 2016, 26(10): 11-16.
[18] 邓威, 郭钇秀, 李勇, 等. 基于聚类及趋势指标的长短期神经网络配网负荷短期预测[J]. 湖南电力, 2021, 41(4): 27-33.
DENG W, GUO Y X, LI Y, et al.Short-term lines load prediction of LSTM distribution network based on clustering and trend indicators[J]. Hunan electric power, 2021, 41(4): 27-33.
[19] 陈众, 徐翼, 吴辅朝, 等. 基于光伏消纳能力模拟评估的配电网最优消纳方案规划选择[J]. 电网技术, 2023, 47(3): 1179-1187, 42.
CHEN Z, XU Y, WU F C, et al.Selection of optimal distribution planning based on simulation of photovoltaic absorption capacity[J]. Power system technology, 2023, 47(3): 1179-1187, 42.
[20] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[21] 纪宇宣, 蒋秋华, 朱颖婷. 基于随机距离预测的高铁客流需求研究[J]. 计算机技术与发展, 2022, 32(5): 189-194.
JI Y X, JIANG Q H, ZHU Y T.Research on passenger flow demand of high-speed rail based on random distance prediction[J]. Computer technology and development, 2022, 32(5): 189-194.

PDF(2398 KB)

Accesses

Citation

Detail

段落导航
相关文章

/