煤-生物质共热解非催化协同效应特征及机理研究进展

钮志远, 刘桂建

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 286-295.

PDF(1800 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1800 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 286-295. DOI: 10.19912/j.0254-0096.tynxb.2022-1897

煤-生物质共热解非催化协同效应特征及机理研究进展

  • 钮志远1, 刘桂建2
作者信息 +

CHARACTERISTICS AND REACTION MECHANISM OF NON-CATALYTIC SYNERGISTIC EFFECT OF COAL AND BIOMASS CO-PYROLYSIS: A REVIEW

  • Niu Zhiyuan1, Liu Guijian2
Author information +
文章历史 +

摘要

对近年来煤-生物质共热解研究中判定是否发生协同效应及协同效应发生强度的4个指标,即温度范围、热重曲线、表观活化能及热解产物的产率及组成进行总结,并概括包括内在因素和外在因素在内的多种影响因素对煤-生物质共热解非催化协同效应的影响,对煤-生物质共热解非催化协同效应反应机理方面的研究进展和成果进行简要评述。最后提出未来煤-生物质共热解非催化协同效应特征和机理研究中可能面临的挑战。

Abstract

It is critical for the enhancement of coal conversion to understand the non-catalytic synergistic effect of coal and biomass co-pyrolysis. In this paper, four indicators for determining the occurrence and intensity of synergistic effects during coal-biomass co-pyrolysis process, namely the temperature range, the thermo-gravimetric curve, the apparent activation energy, and the yield of pyrolysis products and their composition, are summarized based on the researches in recent years. Then the effect of the influence factors, including internal and external factors, on the non-catalytic synergy of co-pyrolysis is also discussed. Moreover, the research progress and achievements on the reaction mechanism of the non-catalytic synergistic effect reported in recent years are also reviewed briefly. Based on these discussions, some possible challenges are proposed for future research.

关键词

/ 生物质 / 燃料油 / 煤液化 / 共热解 / 非催化协同效应

Key words

coal / biomass / fuel oil / coal liquefaction / co-pyrolysis / non-catalytic synergistic effect

引用本文

导出引用
钮志远, 刘桂建. 煤-生物质共热解非催化协同效应特征及机理研究进展[J]. 太阳能学报. 2024, 45(4): 286-295 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1897
Niu Zhiyuan, Liu Guijian. CHARACTERISTICS AND REACTION MECHANISM OF NON-CATALYTIC SYNERGISTIC EFFECT OF COAL AND BIOMASS CO-PYROLYSIS: A REVIEW[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 286-295 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1897
中图分类号: TQ53   

参考文献

[1] BRITISH PETROLEUM. BP statistical review of world energy2021[EB/OL]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf.
[2] VASSILEV S V, BAXTER D, ANDERSEN L K, et al.An overview of the chemical composition of biomass[J]. Fuel, 2010, 89(5): 913-933.
[3] LEHTO J, OASMAA A, SOLANTAUSTA Y, et al.Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass[J]. Applied energy, 2014, 116: 178-190.
[4] HU X, ZHANG Z M, GHOLIZADEH M, et al.Coke formation during thermal treatment of bio-oil[J]. Energy & fuels, 2020, 34(7): 7863-7914.
[5] SINGH K, ZONDLO J.Characterization of fuel properties for coal and torrefied biomass mixtures[J]. Journal of the Energy Institute, 2017, 90(4): 505-512.
[6] CORDERO T, RODRÍGUEZ-MIRASOL J, PASTRANA J, et al. Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes[J]. Fuel, 2004, 83(11/12): 1585-1590.
[7] GUAN Y J, MA Y, ZHANG K, et al.Co-pyrolysis behaviors of energy grass and lignite[J]. Energy conversion and management, 2015, 93: 132-140.
[8] LI S D, LI J Z, XU J E.Investigating the release behavior of biomass and coal during the co-pyrolysis process[J]. International journal of hydrogen energy, 2021, 46(70): 34652-34662.
[9] QUAN C, GAO N B.Copyrolysis of biomass and coal: a review of effects of copyrolysis parameters, product properties, and synergistic mechanisms[J]. BioMed research international, 2016, 2016: 6197867.
[10] WU Z Q, ZHANG J E, ZHANG B, et al.Synergistic effects from co-pyrolysis of lignocellulosic biomass main component with low-rank coal: online and offline analysis on products distribution and kinetic characteristics[J]. Applied energy, 2020, 276: 115461.
[11] WU Z Q, ZHANG J E, FAN Y J, et al.Synergistic effects from co-pyrolysis of lignocellulosic biomass with low-rank coal: a perspective based on the interaction of organic components[J]. Fuel, 2021, 306: 121648.
[12] GOUWS S M, CARRIER M, BUNT J R, et al.Co-pyrolysis of coal and raw/torrefied biomass: a review on chemistry, kinetics and implementation[J]. Renewable and sustainable energy reviews, 2021, 135: 110189.
[13] 李世光, 徐绍平. 煤与生物质的共热解[J]. 煤炭转化, 2002, 25(1): 7-12.
LI S G, XU S P.Copyrolysis of coal and biomass[J]. Coal conversion, 2002, 25(1): 7-12.
[14] 武宏香. 煤与生物质共热解的基础研究[D]. 广州:中国科学院广州能源研究所, 2009.
WU H X.The fundermental study on co-pyrolysis of coal and biomass[D]. Guangzhou: Guangzhou Institute of Energy Resources, Chinese Academy of Sciences, 2009.
[15] 黄元波, 郑志锋, 蒋剑春, 等. 核桃壳与煤共热解的热重分析及动力学研究[J]. 林产化学与工业, 2012, 32(2): 30-36.
HUANG Y B, ZHENG Z F, JIANG J C, et al.Thermogravimetric analysis and kinetics of walnut shell and coal co-pyrolysis[J]. Chemistry and industry of forest products, 2012, 32(2): 30-36.
[16] 王燕杰, 应浩, 孙云娟, 等. 烘焙稻壳与不同煤化程度的煤共热解特性[J]. 化工进展, 2014, 33(3): 643-650.
WANG Y J, YING H, SUN Y J, et al.Co-pyrolysis characteristics of torrefied rice husk with different coalification degree coals[J]. Chemical industry and engineering progress, 2014, 33(3): 643-650.
[17] 李帅丹, 陈雪莉, 于广锁, 等. 生物质与煤共热解行为及模型化研究[J]. 太阳能学报, 2014, 35(6): 965-970.
LI S D, CHEN X L, YU G S, et al.Study on co-pyrolysis behavior and model of biomass and coal[J]. Acta energiae solaris sinica, 2014, 35(6): 965-970.
[18] 何选明, 王小娟, 方嘉淇, 等. 凤眼莲与低阶煤低温共热解特性研究[J]. 煤炭转化, 2014, 37(2): 10-15.
HE X M, WANG X J, FANG J Q, et al.Low-temperature co-pyrolysis of eichhornia crassipes and low-rank coal[J]. Coal conversion, 2014, 37(2): 10-15.
[19] 赵璐涵, 何选明, 李昊, 等. 改质长焰煤与松木共热解协同效应及动力学分析[J]. 煤炭转化, 2019, 42(5): 9-17.
ZHAO L H, HE X M, LI H, et al.Synergistic effect and kinetic analysis of co-pyrolysis of modified long flame coal and pine[J]. Coal conversion, 2019, 42(5): 9-17.
[20] 汤森, 袁艳文, 霍丽丽, 等. 低阶煤与玉米秸秆共热解特性研究[J]. 可再生能源, 2021, 39(2): 156-161.
TANG S, YUAN Y W, HUO L L, et al.Study on the co-pyrolysis characteristics of low rank coal and corn straw[J]. Renewable energy resources, 2021, 39(2): 156-161.
[21] 王俊丽, 赵强, 郝晓刚, 等. 低阶煤与生物质混合低温共热解特性分析及对产物组成的影响[J]. 燃料化学学报, 2021, 49(1): 37-46.
WANG J L, ZHAO Q, HAO X G, et al.Low temperature co-pyrolysis of low rank coal with biomass and its influence on pyrolysis-derived products[J]. Journal of fuel chemistry and technology, 2021, 49(1): 37-46.
[22] PATTANAYAK S, HAUCHHUM L, LOHA C, et al.Thermal performance and synergetic behaviour of co-pyrolysis of North East Indian bamboo biomass with coal using thermogravimetric analysis[J]. Biomass conversion and biorefinery, 2023, 13(13): 11755-11768.
[23] LI S D, CHEN X L, LIU A B, et al.Co-pyrolysis characteristic of biomass and bituminous coal[J]. Bioresource technology, 2015, 179: 414-420.
[24] 张瑞璞, 金晶, 赵冰, 等. 准东煤与玉米秆共热解特性及气体产物释放规律[J]. 动力工程学报, 2020, 40(4): 272-281.
ZHANG R P, JIN J, ZHAO B, et al.Co-pyrolysis characteristics of Zhundong coal and corn stalk and the release of related gaseous products[J]. Journal of Chinese Society of Power Engineering, 2020, 40(4): 272-281.
[25] SHUI H F, SHAN C J, CAI Z Y, et al.Co-liquefaction behavior of a sub-bituminous coal and sawdust[J]. Energy, 2011, 36(11): 6645-6650.
[26] WU Z Q, YANG W C, TIAN X Y, et al.Synergistic effects from co-pyrolysis of low-rank coal and model components of microalgae biomass[J]. Energy conversion and management, 2017, 135: 212-225.
[27] OLLERO P.Diffusional effects in TGA gasification experiments for kinetic determination[J]. Fuel, 2002, 81(15): 1989-2000.
[28] KANG T J, NAMKUNG H, JANG D H, et al.Experimental study on different heating rate kinetics of Indonesian and Inner Mongolian low rank coal for catalytic gasification[J]. Journal of industrial and engineering chemistry, 2014, 20(4): 2095-2102.
[29] ZHANG Y, FAN D, ZHENG Y.Comparative study on combined co-pyrolysis/gasification of walnut shell and bituminous coal by conventional and congruent-mass thermogravimetric analysis (TGA) methods[J]. Bioresource technology, 2016, 199: 382-385.
[30] MU L, WANG R Y, ZHAI Z D, et al.Evaluation of thermokinetics methodology, parameters, and coke characterization of co-pyrolysis of bituminous coal with herbaceous and agricultural biomass[J]. Biomass conversion and biorefinery, 2023, 13(7): 5957-5972.
[31] NYONI B, DUMA S, BOLO L, et al.Co-pyrolysis of South African bituminous coal and Scenedesmus microalgae: kinetics and synergistic effects study[J]. International journal of coal science & technology, 2020, 7(4): 807-815.
[32] SAEED S, SALEEM M, DURRANI A.Thermal performance analysis and synergistic effect on co-pyrolysis of coal and sugarcane bagasse blends pretreated by trihexyltetradecylphosphonium chloride[J]. Fuel, 2020, 278: 118240.
[33] QIU S X, ZHANG S F, ZHOU X H, et al.Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis[J]. Renewable energy, 2019, 136: 308-316.
[34] TIAN H, JIAO H, CAI J M, et al.Co-pyrolysis of Miscanthus Sacchariflorus and coals: a systematic study on the synergies in thermal decomposition, kinetics and vapour phase products[J]. Fuel, 2020, 262: 116603.
[35] 孙云娟, 蒋剑春, 王燕杰, 等. Coats-Redfern积分法研究生物质与煤单独热解和共热解动力学特性[J]. 林产化学与工业, 2014, 34(5): 8-14.
SUN Y J, JIANG J C, WANG Y J, et al.Kinetic analysis of biomass and coal mono-pyrolysis as well as co-pyrolysis by coats-redfern[J]. Chemistry and industry of forest products, 2014, 34(5): 8-14.
[36] 刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1439.
LIU Z Y.Advancement in coal chemistry: structure and reactivity[J]. Scientia sinica chimica, 2014, 44(9): 1431-1439.
[37] WU Z Q, WANG S Z, ZHAO J, et al.Product distribution during co-pyrolysis of bituminous coal and lignocellulosic biomass major components in a drop-tube furnace[J]. Energy & fuels, 2015, 29(7): 4168-4180.
[38] WU Z Q, LI Y W, ZHANG B, et al.Co-pyrolysis behavior of microalgae biomass and low-rank coal: kinetic analysis of the main volatile products[J]. Bioresource technology, 2019, 271: 202-209.
[39] AN Y, TAHMASEBI A, YU J L.Mechanism of synergy effect during microwave co-pyrolysis of biomass and lignite[J]. Journal of analytical and applied pyrolysis, 2017, 128: 75-82.
[40] 柯萍, 何选明, 刘靖, 等. 低阶煤与玉米芯低温共热解的产物特性分析[J]. 生物质化学工程, 2019, 53(4): 26-30.
KE P, HE X M, LIU J, et al.Characteristics of low temperature co-pyrolysis products of low-rank coal and corncob[J]. Biomass chemical engineering, 2019, 53(4): 26-30.
[41] LIN B W, ZHOU J S, QIN Q W, et al.Physicochemical characteristics of biomass-coal blend char: the role of co-pyrolysis synergy[J]. Energy science & engineering, 2021, 9(8): 1249-1262.
[42] ZHANG C X, LI S Q, OUYANG S, et al.Co-pyrolysis characteristics of camellia oleifera shell and coal in a TGA and a fixed-bed reactor[J]. Journal of analytical and applied pyrolysis, 2021, 155: 105035.
[43] TANG C Y, YANG L, LI X C, et al.Characteristics of small molecule compounds produced from the co-pyrolysis of cotton stalk and coal[J]. BioResources, 2021, 16(1): 1469-1481.
[44] 唐初阳, 张德祥, 鲁锡兰. 煤的理化性质对生物质和煤共热解焦油性质的影响[J]. 可再生能源, 2016, 34(10): 1548-1553.
TANG C Y, ZHANG D X, LU X L.Effects of coal physicochemical on tar characteristics during co-pyrolysis of biomass and coal[J]. Renewable energy resources, 2016, 34(10): 1548-1553.
[45] 金康华, 章康, 季银飞, 等. 煤与生物质中高温共热解特性研究[J]. 热力发电, 2020, 49(9): 39-45.
JIN K H, ZHANG K, JI Y F, et al.Co-pyrolysis characteristics of coal and biomass at medium-high temperatures[J]. Thermal power generation, 2020, 49(9): 39-45.
[46] WU Z Q, LI Y W, XU D H, et al.Co-pyrolysis of lignocellulosic biomass with low-quality coal: optimal design and synergistic effect from gaseous products distribution[J]. Fuel, 2019, 236: 43-54.
[47] 王建飞, 赵建涛, 李风海, 等. 生物质与烟煤程序升温共热解产物特性分析[J]. 化学工程, 2015, 43(6): 14-18.
WANG J F, ZHAO J T, LI F H, et al.Product characteristics of co-pyrolysis of biomass and bituminous coal at programmed heating rate[J]. Chemical engineering(China), 2015, 43(6): 14-18.
[48] 王春霞, 何选明, 曾宪灿, 等. 低阶煤与浒苔低温共热解产物特性研究[J]. 煤炭转化, 2015, 38(2): 6-9.
WANG C X, HE X M, ZENG X C, et al.Low-temperature co-pyrolysis products of low-rank coal and enteromorpha[J]. Coal conversion, 2015, 38(2): 6-9.
[49] 易霜, 何选明, 郑辉, 等. 甘蔗渣与褐煤共热解半焦的特性[J]. 化工进展, 2016, 35(10): 3149-3154.
YI S, HE X M, ZHENG H, et al.Characteristics of co-pyrolysis char of sugarcane bagasse and lignite[J]. Chemical industry and engineering progress, 2016, 35(10): 3149-3154.
[50] CHEN X Y, LIU L, ZHANG L Y, et al.A review on the properties of copyrolysis char from coal blended with biomass[J]. Energy & fuels, 2020, 34(4): 3996-4005.
[51] OLADEJO J M, ADEGBITE S, PANG C H, et al.A novel index for the study of synergistic effects during the co-processing of coal and biomass[J]. Applied energy, 2017, 188: 215-225.
[52] ZHANG Y, ZHENG Y, YANG M J, et al.Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2[J]. Bioresource technology, 2016, 200: 789-794.
[53] JIAO Z X, LIU L, ZHAO Y, et al.Study on reactivity and synergy behavior of cogasification between biomass char and coal char[J]. Energy & fuels, 2021, 35(1): 341-350.
[54] MALLICK D, MAHANTA P, MOHOLKAR V S.Co-gasification of coal and biomass blends: chemistry and engineering[J]. Fuel, 2017, 204: 106-128.
[55] SONOBE T, WORASUWANNARAK N, PIPATMANOMAI S.Synergies in co-pyrolysis of Thai lignite and corncob[J]. Fuel processing technology, 2008, 89(12): 1371-1378.
[56] 戴贡鑫. 生物质热解机理及选择性调控研究[D]. 杭州: 浙江大学, 2020.
DAI G X.Fundamental research on biomass fast pyrolysis and selective conversion[D]. Hangzhou: Zhejiang University, 2020.
[57] WANG G Y, DAI Y J, YANG H P, et al.A review of recent advances in biomass pyrolysis[J]. Energy & fuels, 2020, 34(12): 15557-15578.
[58] ISMAIL T M, BANKS S W, YANG Y, et al.Coal and biomass co-pyrolysis in a fluidized-bed reactor: numerical assessment of fuel type and blending conditions[J]. Fuel, 2020, 275: 118004.
[59] GUO M, BI J C.Characteristics and application of co-pyrolysis of coal/biomass blends with solid heat carrier[J]. Fuel processing technology, 2015, 138: 743-749.
[60] MENG H Y, WANG S Z, WU Z Q, et al.Thermochemical behavior and kinetic analysis during co-pyrolysis of starch biomass model compound and lignite[J]. Energy procedia, 2019, 158: 400-405.
[61] YAN L B, CAO Y, LI X Z, et al.Characterization of a dual fluidized bed gasifier with blended biomass/coal as feedstock[J]. Bioresource technology, 2018, 254: 97-106.
[62] ABOYADE A O, CARRIER M, MEYER E L, et al.Model fitting kinetic analysis and characterisation of the devolatilization of coal blends with corn and sugarcane residues[J]. Thermochimica acta, 2012, 530: 95-106.
[63] 何选明, 王小娟, 王春霞, 等. 基于正交实验优化凤眼莲与低阶煤共热解条件[J]. 煤炭转化, 2015, 38(1): 23-26, 38.
HE X M, WANG X J, WANG C X, et al.Parameter optimization of co-pyrolysis of eichhornia crassipes and low-rank coal based on orthogonal experiments[J]. Coal conversion, 2015, 38(1): 23-26, 38.
[64] YUAN S, DAI Z H, ZHOU Z J, et al.Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char[J]. Bioresource technology, 2012, 109: 188-197.
[65] HE W J, YIN G J, ZHAO Y B, et al.Interactions between free radicals during co-pyrolysis of lignite and biomass[J]. Fuel, 2021, 302: 121098.
[66] GOUWS S M, CARRIER M, BUNT J R, et al.Co-pyrolysis of torrefied biomass and coal: effect of pressure on synergistic reactions[J]. Journal of analytical and applied pyrolysis, 2022, 161: 105363.
[67] JONES J M, KUBACKI M, KUBICA K, et al.Devolatilisation characteristics of coal and biomass blends[J]. Journal of analytical and applied pyrolysis, 2005, 74(1/2): 502-511.
[68] ZHU J L, ZHAO S, WEI B Y, et al.Enhanced co-pyrolysis synergies between cedar and Naomaohu coal volatiles for tar production[J]. Journal of analytical and applied pyrolysis, 2021, 160: 105355.
[69] FLORENTINO-MADIEDO L, VEGA M F, DÍAZ-FAES E, et al. Evaluation of synergy during co-pyrolysis of torrefied sawdust, coal and paraffin. A kinetic and thermodynamic study[J]. Fuel, 2021, 292: 120305.
[70] 刘巧霞, 王宁波, 张月明, 等. 煤与生物质快速流化床共热解的协同效应[J]. 煤炭转化, 2017, 40(1): 19-25.
LIU Q X, WANG N B, ZHANG Y M, et al.Synergistic effect of co-pyrolysis of coal and biomass on fast fluidized bed[J]. Coal conversion, 2017, 40(1): 19-25.
[71] 魏立纲, 张丽, 徐绍平. 自由落下床中生物质与煤共热解的协同效应对焦油组成的影响[J]. 燃料化学学报, 2012, 40(5): 519-525.
WEI L G, ZHANG L, XU S P.Effect of synergism between biomass and coal during co-pyrolysis in a free fall reactor on tar components[J]. Journal of fuel chemistry and technology, 2012, 40(5): 519-525.
[72] ZHANG J J, QUAN C, QIU Y J, et al.Effect of char on co-pyrolysis of biomass and coal in a free fall reactor[J]. Fuel processing technology, 2015, 135: 73-79.
[73] 任秀彬, 辛文辉, 周安宁. 煤与生物质固定床共热解产物分布及热解动力学研究[J]. 应用化工, 2017, 46(8): 1644-1649.
REN X B, XIN W H, ZHOU A N.Co-pyrolysis characteristics and kinetics of coal and sunflower stalk blends in fixed bed[J]. Applied chemical industry, 2017, 46(8): 1644-1649.
[74] 范辉, 任倩, 冯彩云, 等. 宁东红石湾煤与生物质共热解协同机制[J]. 石油学报(石油加工), 2019, 35(5): 981-987.
FAN H, REN Q, FENG C Y, et al.Co-pyrolysis synergistic effect of HSW coal and biomass in ningdong[J]. Acta petrolei sinica (petroleum processing section), 2019, 35(5): 981-987.
[75] NZIHOU A, STANMORE B, SHARROCK P.A review of catalysts for the gasification of biomass char, with some reference to coal[J]. Energy, 2013, 58: 305-317.
[76] 何玉远, 常春, 方书起, 等. 煤与生物质共热解工艺的研究进展[J]. 可再生能源, 2018, 36(2): 159-166.
HE Y Y, CHANG C, FANG S Q, et al.Research process of co-pyrolysis technology of coal and biomass[J]. Renewable energy resources, 2018, 36(2): 159-166.
[77] PARK D K, KIM S D, LEE S H, et al.Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor[J]. Bioresource technology, 2010, 101(15): 6151-6156.
[78] ZHANG Z Y, PANG S S, LEVI T.Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass[J]. Renewable energy, 2017, 101: 356-363.
[79] YANG P B, ZHAO S H, ZHANG Q G, et al.Synergistic effect of the cotton stalk and high-ash coal on gas production during co-pyrolysis/gasification[J]. Bioresource technology, 2021, 336: 125336.
[80] TCHAPDA A, PISUPATI S.A review of thermal co-conversion of coal and biomass/waste[J]. Energies, 2014, 7(3): 1098-1148.
[81] LI S D, CHEN X L, WANG L, et al.Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor[J]. Bioresource technology, 2013, 148: 24-29.
[82] AKASH B A, MUCHMORE C B, KOROPCHAK J A, et al.Investigations of simultaneous coal and lignin liquefaction: kinetic studies[J]. Energy & fuels, 1992, 6(5): 629-634.
[83] AKASH B A, MUCHMORE C B, LALVANI S B.Coliquefaction of coal and newsprint-derived lignin[J]. Fuel processing technology, 1994, 37(3): 203-210.
[84] LALVANI S B, MUCHMORE C B, KOROPCHAK J, et al.Lignin-augmented coal depolymerization under mild reaction conditions[J]. Energy & fuels, 1991, 5(2): 347-352.
[85] SONCINI R M, MEANS N C, WEILAND N T.Co-pyrolysis of low rank coals and biomass: product distributions[J]. Fuel, 2013, 112: 74-82.
[86] YANG F S, ZHOU A N, ZHAO W, et al.Thermochemical behaviors, kinetics and gas emission analyses during co-pyrolysis of walnut shell and coal[J]. Thermochimica acta, 2019, 673: 26-33.
[87] KRERKKAIWAN S, FUSHIMI C, TSUTSUMI A, et al.Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal[J]. Fuel processing technology, 2013, 115: 11-18.
[88] MORGAN T J, KANDIYOTI R.Pyrolysis of coals and biomass: analysis of thermal breakdown and its products[J]. Chemical reviews, 2014, 114(3): 1547-1607.
[89] NIU Z Y, LIU G J, YIN H, et al.In-situ FTIR study of reaction mechanism and chemical kinetics of a Xundian lignite during non-isothermal low temperature pyrolysis[J]. Energy conversion and management, 2016, 124: 180-188.
[90] NIU Z Y, LIU G J, YIN H, et al.Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in situ FTIR[J]. Fuel, 2016, 172: 1-10.
[91] NIU Z Y, LIU G J, YIN H, et al.Devolatilization behaviour and pyrolysis kinetics of coking coal based on the evolution of functional groups[J]. Journal of analytical and applied pyrolysis, 2018, 134: 351-361.
[92] NIU Z Y, LIU G J, YIN H, et al.A comparative study on thermal behavior of functional groups in coals with different ranks during low temperature pyrolysis[J]. Journal of analytical and applied pyrolysis, 2021, 158: 105258.
[93] LIU R J, LIU G J, YOUSAF B, et al.Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix[J]. Renewable and sustainable energy reviews, 2022, 153: 111761.

基金

国家自然科学基金(41972166); 江苏省双创博士项目(JSSCBS20220750); 安徽省自然科学基金(1808085MD96)

PDF(1800 KB)

Accesses

Citation

Detail

段落导航
相关文章

/