基于场协同理论的热空气吹掠型太阳能蒸馏器对流传热性能优化分析

高虹, 刘敬花, 闫素英, 聂晶

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 524-531.

PDF(6100 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(6100 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 524-531. DOI: 10.19912/j.0254-0096.tynxb.2022-1901

基于场协同理论的热空气吹掠型太阳能蒸馏器对流传热性能优化分析

  • 高虹1,2, 刘敬花1, 闫素英1,2, 聂晶1
作者信息 +

OPTIMIZATION ANALYSIS OF CONVECTIVE HEAT TRANSFER PERFORMANCE OF HOT AIR SWEPT SOLAR DISTILLATION BASED ON FIELD SYNERGY THEORY

  • Gao Hong1,2, Liu Jinghua1, Yan Suying1,2, Nie Jing1
Author information +
文章历史 +

摘要

以热空气吹掠型太阳能蒸馏器为研究对象,利用数值模拟结果和均匀设计法分析蒸馏器内流动与传热场协同角的变化规律和影响因素。结果表明,影响场协同角的主要因素是热空气进口速度,热空气进口温度和水温的影响不显著。在蒸馏水温30~70 ℃、进口空气温度40~90 ℃,进口空气速度为8 m/s时平均传热场协同角最小,为73.14°,传热系数最大,可达到同等条件下自然对流传热系数的4倍。

Abstract

In this paper, the hot air swept solar distiller is taken as the research object. Based on the numerical simulation results and uniform design method, this paper analyzes the variation law and influencing factors of the synergistic Angle between flow and heat transfer field in a solar distiller with hot air blowing. The result shows that the main factor affecting the field synergy Angle is the hot air inlet velocity, the influence of hot air inlet temperature and water temperature is not significant. When the distilled water temperature is 30-70 ℃ and the inlet air temperature is 40-90 ℃, the average heat transfer field synergy Angle is the minimum (73.14°) when the inlet air speed is 8 m/s. At this time, the heat transfer coefficient is the maximum, which can reach 4 times of the natural convection heat transfer coefficient under the same conditions.

关键词

太阳能 / 蒸馏 / 场协同 / 均匀设计 / 强化传热

Key words

solar energy / distillation / field synergy / uniform design / heat transfer enhancement

引用本文

导出引用
高虹, 刘敬花, 闫素英, 聂晶. 基于场协同理论的热空气吹掠型太阳能蒸馏器对流传热性能优化分析[J]. 太阳能学报. 2024, 45(4): 524-531 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1901
Gao Hong, Liu Jinghua, Yan Suying, Nie Jing. OPTIMIZATION ANALYSIS OF CONVECTIVE HEAT TRANSFER PERFORMANCE OF HOT AIR SWEPT SOLAR DISTILLATION BASED ON FIELD SYNERGY THEORY[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 524-531 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1901
中图分类号: TK519   

参考文献

[1] RAI S N, TIWARI G N.Single basin solar still coupled with flat plate collector[J]. Energy conversion and management, 1983, 23(3): 145-149.
[2] TIWARI G N, DHIMAN N K.Performance study of a high temperature distillation system[J]. Energy conversion and management, 1991, 32(3): 283-291.
[3] ZAKI G M, RADHWAN A M, BALBEID A O.Analysis of assisted coupled solar stills[J]. Solar energy, 1993, 51(4): 277-288.
[4] MECHANICS Q Z O E, UNIVERSITY T, BEIJING, et al. Mechanism and control of convective heat transfer-coordination of velocity and heat flow fields[J]. Chinese science bulletin, 2001, 46(7): 596-599.
[5] RANI H P, KORAGONI N, NARAYANA V.Differentially heated cubical cavity using energy pathlines and field synergy[J]. Heat transfer, 2020, 49(6): 3683-3701.
[6] 赫连雅馨. 倾斜封闭方腔内自然对流换热的场协同分析[J]. 节能, 2017, 36(1): 35-38, 2.
HELIAN Y X.The analysis of natural convection heat transfer in a inclined closed square cavity by field synergy principle[J]. Energy conservation, 2017, 36(1): 35-38, 2.
[7] LI F, ZHU W H, HE H.Numerical optimization on microchannel flow and heat transfer performance based on field synergy principle[J]. International journal of heat and mass transfer, 2019, 130: 375-385.
[8] WU H.Numerical simulation of heat transfer field synergy theory[J]. Journal of Tsinghua University(natural science edition), 2002, 42(4): 4.
[9] CHAFIK E.Design of plants for solar desalination using the multi-stag heating/humidifying technique[J]. Desalination, 2004, 168: 55-71.
[10] KABEEL A E, HAMED M H, OMARA Z M, et al.Experimental study of a humidification-dehumidification solar technique by natural and forced air circulation[J]. Energy, 2014, 68: 218-228.
[11] 原郭丰, 赵子竞, Jakob Berg Johanson, 等. 雾化加湿除湿海水淡化中蒸发过程实验研究[J]. 太阳能学报, 2016, 37(12): 3214-3218.
YUAN G F, ZHAO Z J, JOHANSON J, et al.Experiment research of evaporation process in spray atomization humidification-dehumidification desalination[J]. Acta energiae solaris sinica, 2016, 37(12): 3214-3218.
[12] 汲超, 韩东, 王景炎. 双热质耦合加湿除湿海水淡化性能试验分析[J]. 节能技术, 2019, 37(2): 134-139.
JI C, HAN D, WANG J Y.Performance analysis experimentally of a dual heat and mass transfer coupled humidification dehumidification desalination[J]. Energy conservation technology, 2019, 37(2): 134-139.
[13] SHARQAWY M H, AL-SHALAWI I, ANTAR M A, et al.Experimental investigation of packed-bed cross-flow humidifier[J]. Applied thermal engineering, 2017, 117: 584-590.
[14] LIU F Z, ZHENG H F, JIN R H, et al.Design of a multi-surface solar concentrator[J]. Journal of daylighting, 2019, 6(2): 176-186.
[15] 赵志勇, 郑宏飞, 赵云胜, 等. 热空气式加湿除湿海水淡化装置研究[J]. 太阳能学报, 2021, 42(8): 289-294.
ZHAO Z Y, ZHENG H F, ZHAO Y S, et al.Study on humidification and dehumidification desalination device oriven by solar air heater[J]. Acta energiae solaris sinica, 2021, 42(8): 289-294.
[16] GANG W, ZHENG H F, KANG H F, et al.Experimental investigation of a multi-effect isothermal heat with tandem solar desalination system based on humidification-dehumidification processes[J]. Desalination, 2016, 378: 100-107.
[17] 吕彦力, 王建军, 郝亚萍, 等. 太阳能蓄热单元蓄热过程的数值模拟与优化[J]. 轻工学报, 2016, 31(2): 74-80.
LYU Y L, WANG J J, HAO Y P, et al.Numerical simulation and optimization of solar heat storage unit regenerative process[J]. Journal of light industry, 2016, 31(2): 74-80.
[18] 舒林森, 林冉. 基于均匀设计的铁基合金粉末激光熔覆工艺参数优化[J]. 材料热处理学报, 2021, 42(4): 167-174.
SHU L S, LIN R.Optimization of laser cladding process parameters of iron-based alloy powder based on uniform design[J]. Transactions of materials and heat treatment, 2021, 42(4): 167-174.
[19] TANG X Y, YANG W W, YANG Y, et al.A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution[J]. Energy, 2021, 229: 120749.
[20] TAYEB A M.Performance study of some designs of solar stills[J]. Energy conversion and management, 1992, 33(9): 889-898.
[21] 王亚臣, 刘竹丽, 梁帅. 基于场协同理论的冷藏展示柜内流体对流换热分析[J]. 包装工程, 2022, 43(1): 245-252.
WANG Y C, LIU Z L, LIANG S.Fluid convection heat transfer in refrigerated display cabinet based on field synergy theory[J]. Packaging engineering, 2022, 43(1): 245-252.

基金

风能太阳能利用技术教育部重点实验室开放基金(2019-2021); 内蒙古自然基金(2021LHMS05007); 内蒙古工业大学博士基金(BS201933); 内蒙古自治区重大专项(2019ZD0014)

PDF(6100 KB)

Accesses

Citation

Detail

段落导航
相关文章

/