储能调频控制参数自适应优化与退出机制设计

杨永辉, 谢丽蓉, 包洪印, 马伟, 孙金辉

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 338-346.

PDF(2878 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2878 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 338-346. DOI: 10.19912/j.0254-0096.tynxb.2022-1908

储能调频控制参数自适应优化与退出机制设计

  • 杨永辉1,2, 谢丽蓉1, 包洪印3, 马伟1,2, 孙金辉1
作者信息 +

ADAPTIVE OPTIMIZATION AND EXIT MECHANISM DESIGN OF FREQUENCY MODULATION CONTROL PARAMETERS FOR ENERGY STORAGE

  • Yang Yonghui1,2, Xie Lirong1, Bao Hongyin3, Ma Wei1,2, Sun Jinhui1
Author information +
文章历史 +

摘要

为解决储能控制参数设置不当引起的频率稳定性问题以及储能调频效果和循环使用寿命难以平衡的问题,提出一种储能调频控制参数自适应优化与退出机制设计方法。首先分析储能下垂、虚拟正(负)惯量系数对系统频率动态性能及稳定性的影响,得到参数稳定变化的范围;然后,根据控制参数稳定变化区间,设计含虚拟负惯量的模糊自适应控制方法,实现控制方式之间的平滑切换和优势互补,加快频率恢复;再则,利用Logistic函数设计考虑储能荷电状态(SOC)的自适应反馈控制策略,同时引入储能退出机制,反馈调节优化储能出力,以期解决储能调频效果和循环使用寿命难以平衡的问题。最后,在Matlab/Simulink仿真平台上进行仿真验证,验证所提策略的有效性及对频率的改善作用。

Abstract

In order to solve the problem of frequency stability caused by improper setting of energy storage control parameters and difficult balance between energy storage frequency modulation effect and cycle life. This paper proposes a method of adaptive optimization of energy storage frequency modulation control parameters and design of exit mechanism. Firstly, the influence of energy storage droop and virtual positive (negative) inertia coefficient on the dynamic performance and stability of the system frequency is analyzed, and the stable variation range of parameters is obtained. Then, according to the stable variation range of control parameters, a fuzzy adaptive control method with virtual negative inertia is designed to realize smooth switching and complementary advantages between control modes and accelerate frequency recovery. Moreover, the Logistic function is used to design an adaptive feedback control strategy considering the state of charge (SOC) of the energy storage, and the exit mechanism of energy storage is introduced to adjust and optimize the output of energy storage by feedback, so as to solve the problem that it is difficult to balance the frequency modulation effect and cycle life of energy storage. Finally, the effectiveness of the proposed strategy and the improvement of frequency are verified by simulation on Matlab/Simulink simulation platform.

关键词

电池储能 / 调频 / 模糊控制 / 参数自适应优化 / 退出机制

Key words

battery energy storage / frequency modulation / fuzzy control / parameter adaptive optimization / exit mechanism

引用本文

导出引用
杨永辉, 谢丽蓉, 包洪印, 马伟, 孙金辉. 储能调频控制参数自适应优化与退出机制设计[J]. 太阳能学报. 2024, 45(4): 338-346 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1908
Yang Yonghui, Xie Lirong, Bao Hongyin, Ma Wei, Sun Jinhui. ADAPTIVE OPTIMIZATION AND EXIT MECHANISM DESIGN OF FREQUENCY MODULATION CONTROL PARAMETERS FOR ENERGY STORAGE[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 338-346 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1908
中图分类号: TM91   

参考文献

[1] 张子扬, 张宁, 杜尔顺, 等. 双高电力系统频率安全问题评述及其应对措施[J]. 中国电机工程学报, 2022, 42(1): 1-24.
ZHANG Z Y, ZHANG N, DU E S, et al.Review and countermeasures on frequency security issues of power systems with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2022, 42(1): 1-24.
[2] 陈雪梅, 陆超, 刘杰, 等. 考虑调频性能考核的储能-机组联合调频控制策略[J]. 中国电机工程学报, 2021, 41(10): 3383-3391, 8.
CHEN X M, LU C, LIU J, et al.Control strategy considering AGC performance assessment for BESS coordinated with thermal power unit in AGC[J]. Proceedings of the CSEE, 2021, 41(10): 3383-3391, 8.
[3] 黎淑娟, 李欣然, 黄际元, 等. 考虑倍率特性的调频用储能电池优化配置[J]. 太阳能学报, 2020, 41(3): 127-132.
LI S J, LI X R, HUANG J Y, et al.Optimal configuration of frequency regulation battery energy storage considering rate characteristics[J]. Acta energiae solaris sinica, 2020, 41(3): 127-132.
[4] 杨永辉, 谢丽蓉, 李佳明, 等. 基于模糊控制的储能参与一次调频综合控制策略[J]. 智慧电力, 2023, 51(4): 38-45.
YANG Y H, XIE L R, LI J M, et al.Integrated control strategy of energy storage participating in primary frequency regulation based on fuzzy control[J]. Smart power, 2023, 51(4): 38-45.
[5] 李建林, 屈树慷, 马速良, 等. 电池储能系统辅助电网调频控制策略研究[J]. 太阳能学报, 2023, 44(3): 326-335.
LI J L, QU S K, MA S L, et al.Research on frequency modulation control strategy of auxiliary power grid in battery energy storage system[J]. Acta energiae solaris sinica, 2023, 44(3): 326-335.
[6] 黄际元, 李欣然, 曹一家, 等. 考虑储能参与快速调频动作时机与深度的容量配置方法[J]. 电工技术学报, 2015, 30(12): 454-464.
HUANG J Y, LI X R, CAO Y J, et al.Capacity allocation of energy storage system considering its action moment and output depth in rapid frequency regulation[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 454-464.
[7] 马智慧, 李欣然, 谭庄熙, 等. 考虑储能调频死区的一次调频控制方法[J]. 电工技术学报, 2019, 34(10): 2102-2115.
MA Z H, LI X R, TAN Z X, et al.Integrated control of primary frequency regulation considering dead band of energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2102-2115.
[8] 张波, 张晓磊, 贾焦心, 等. 基于惯量支撑和一次调频需求的VSG储能单元配置方法[J]. 电力系统自动化, 2019, 43(23): 202-209.
ZHANG B, ZHANG X L, JIA J X, et al.Configuration method for energy storage unit of virtual synchronous generator based on requirements of inertia support and primary frequency regulation[J]. Automation of electric power systems, 2019, 43(23): 202-209.
[9] 王育飞, 杨铭诚, 薛花, 等. 计及SOC的电池储能系统一次调频自适应综合控制策略[J]. 电力自动化设备, 2021, 41(10): 192-198, 219.
WANG Y F, YANG M C, XUE H, et al.Self-adaptive integrated control strategy of battery energy storage system considering SOC for primary frequency regulation[J]. Electric power automation equipment, 2021, 41(10): 192-198, 219.
[10] 邓霞, 孙威, 肖海伟. 储能电池参与一次调频的综合控制方法[J]. 高电压技术, 2018, 44(4): 1157-1165.
DENG X, SUN W, XIAO H W.Integrated control strategy of battery energy storage system in primary frequency regulation[J]. High voltage engineering, 2018, 44(4): 1157-1165.
[11] 李军徽, 高卓, 李翠萍, 等. 基于动态任务系数的储能辅助风电一次调频控制策略[J]. 电力系统自动化, 2021, 45(19): 52-59.
LI J H, GAO Z, LI C P, et al.Control strategy for dynamic task coefficient based primary frequency regulation of wind power assisted by energy storage[J]. Automation of electric power systems, 2021, 45(19): 52-59.
[12] WANG K F, QIAO Y, XIE L R, et al.A fuzzy hierarchical strategy for improving frequency regulation of battery energy storage system[J]. Journal of modern power systems and clean energy, 2021, 9(4): 689-698.
[13] 吴启帆, 宋新立, 张静冉, 等. 电池储能参与电网一次调频的自适应综合控制策略研究[J]. 电网技术, 2020, 44(10): 3829-3836.
WU Q F, SONG X L, ZHANG J R, et al.Study on self-adaptation comprehensive strategy of battery energy storage in primary frequency regulation of power grid[J]. Power system technology, 2020, 44(10): 3829-3836.
[14] ZHU D W, ZHANG Y J A. Optimal coordinated control of multiple battery energy storage systems for primary frequency regulation[J]. IEEE transactions on power systems, 2019, 34(1): 555-565.
[15] 严干贵, 王铭岐, 段双明, 等. 考虑荷电状态恢复的储能一次调频控制策略[J]. 电力系统自动化, 2022, 46(21): 52-61.
YAN G G, WANG M Q, DUAN S M, et al.Primary frequency regulation control strategy of energy storage considering state of charge recovery[J]. Automation of electric power systems, 2022, 46(21): 52-61.
[16] 严干贵, 刘莹, 段双明, 等. 电池储能单元群参与电力系统二次调频的功率分配策略[J]. 电力系统自动化, 2020, 44(14): 26-34.
YAN G G, LIU Y, DUAN S M, et al.Power distribution strategy for battery energy storage unit group participating in secondary frequency regulation of power system[J]. Automation of electric power systems, 2020, 44(14): 26-34.
[17] 廖小兵, 刘开培, 乐健, 等. 基于双层模型预测结构的跨区域AGC机组协同控制策略[J]. 中国电机工程学报, 2019, 39(16): 4674-4685, 4970.
LIAO X B, LIU K P, LE J, et al.Coordinated control strategy for AGC units across areas based on bi-level model predictive control[J]. Proceedings of the CSEE, 2019, 39(16): 4674-4685, 4970.
[18] PANDŽIĆ H, BOBANAC V. An accurate charging model of battery energy storage[J]. IEEE transactions on power systems, 2019, 34(2): 1416-1426.
[19] 李少林, 王伟胜, 张兴, 等. 基于频率响应区间划分的风电机组虚拟惯量模糊自适应控制[J]. 电网技术, 2021, 45(5): 1658-1664, 2.
LI S L, WANG W S, ZHANG X, et al.Fuzzy adaptive virtual inertia control strategy of wind turbines based on system frequency response interval division[J]. Power system technology, 2021, 45(5): 1658-1664, 2.

基金

国家自然科学基金(62163034); 新疆重大科技专项项目(2022A1001-5); 新疆工程研究中心(2022062420); 新疆自治区天山创新团队(2021D14012)

PDF(2878 KB)

Accesses

Citation

Detail

段落导航
相关文章

/