基于CS-DBN的锂电池剩余寿命预测

梁佳佳, 何晓霞, 肖浩逸

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 251-259.

PDF(1651 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1651 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 251-259. DOI: 10.19912/j.0254-0096.tynxb.2022-1923

基于CS-DBN的锂电池剩余寿命预测

  • 梁佳佳1,2, 何晓霞1,2, 肖浩逸1,2
作者信息 +

PREDICTION OF REMAINING USEFUL LIFE OF LITHIUM BATTERIES BASED ON CS-DBN

  • Liang Jiajia1,2, He Xiaoxia1,2, Xiao Haoyi1,2
Author information +
文章历史 +

摘要

为了更准确地对锂电池剩余使用寿命进行预测,提出一种基于布谷鸟算法(CS)和深度信念网络(DBN)的预测模型。首先,引进16个影响锂电池RUL的健康因子(HI),通过随机森林(RF)选择出对于剩余寿命预测较为重要的9个HI。随后用CS去寻优深度信念网络模型中隐藏层的参数,通过寻优,建立最优的深度信念网络预测模型。最后,使用马里兰大学所收集的电池数据(CALCE)进行实验,结果表明:所提出的CS-DBN模型的拟合优度高达98%,且与其他模型的预测结果进行对比,具有更小的误差,验证了所提方法的有效性。

Abstract

In order to predict the remaining service life of lithium batteries more accurately, a prediction model based on cuckoo algorithm (CS) and deep belief network (DBN) is proposed in this paper. Firstly, 16 health indicators (HI) that affect the RUL of lithium batteries are introduced, and nine HIs that are more important for the RUL through random forest (RF) are selected. Then the CS is used to optimize the parameters of the hidden layer in the deep belief network model, and the optimal deep belief network prediction model is established through optimization. Finally, the battery data collected by the University of Maryland (CALCE) is used for the experiment. The results show that the goodness of fit of the CS-DBN model proposed in this paper is up to 98%, and compared with the prediction results of other models, it has smaller error, which verifies the effectiveness of the proposed method.

关键词

锂离子电池 / 剩余使用寿命 / 随机森林 / 深度信念网络 / 布谷鸟算法 / 健康因子

Key words

lithium-ion batteries / remaining useful life / random forest / deep belief network / cuckoo algorithm / health indicator

引用本文

导出引用
梁佳佳, 何晓霞, 肖浩逸. 基于CS-DBN的锂电池剩余寿命预测[J]. 太阳能学报. 2024, 45(3): 251-259 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1923
Liang Jiajia, He Xiaoxia, Xiao Haoyi. PREDICTION OF REMAINING USEFUL LIFE OF LITHIUM BATTERIES BASED ON CS-DBN[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 251-259 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1923
中图分类号: TM912   

参考文献

[1] 陈雄姿, 于劲松, 唐荻音, 等. 基于贝叶斯LS-SVR的锂电池剩余寿命概率性预测[J]. 航空学报, 2013, 34(9): 2219-2229.
CHEN X Z, YU J S, TANG D Y, et al.Probabilistic residual life prediction for lithium-ion batteries based on Bayesian LS-SVR[J]. Acta aeronautica et astronautica sinica, 2013, 34(9): 2219-2229.
[2] AN D, CHOI J H, KIM N H.Prognostics 101: a tutorial for particle filter-based prognostics algorithm using Matlab[J]. Reliability engineering & system safety, 2013, 115: 161-169.
[3] HU C, JAIN G, TAMIRISA P, et al.Method for estimating capacity and predicting remaining useful life of lithium-ion battery[J]. Applied energy, 2014, 126: 182-189.
[4] 王玉斐. 基于模型的锂离子电池剩余寿命预测方法[D]. 哈尔滨: 哈尔滨工程大学, 2017.
WANG Y F.Prognostics of Li-ion batteries using model-based approach[D]. Harbin: Harbin Engineering University, 2017.
[5] 林娅, 陈则王. 锂离子电池剩余寿命预测研究综述[J]. 电子测量技术, 2018, 41(4): 29-35.
LIN Y, CHEN Z W.Review of remaining life prediction for lithium-ion batteries[J]. Electronic measurement technology, 2018, 41(4): 29-35.
[6] ZHOU Y P, HUANG M H.Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics reliability, 2016, 65: 265-273.
[7] HE Y J, SHEN J N, SHEN J F, et al.State of health estimation of lithium-ion batteries: a multiscale Gaussian process regression modeling approach[J]. AIChE journal, 2015, 61(5): 1589-1600.
[8] PATIL M A, TAGADE P, HARIHARAN K S, et al.A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation[J]. Applied energy, 2015, 159: 285-297.
[9] 刘月峰. 基于数据驱动的锂离子电池剩余寿命融合预测方法研究[D]. 哈尔滨:哈尔滨工业大学, 2020.
LIU Y F.Research on data-driven fusion prediction methods of lithium-ion battery remaining useful life[D]. Harbin: Harbin Institute of Technology, 2020.
[10] 王瀛洲, 倪裕隆, 郑宇清, 等. 基于ALO-SVR的锂离子电池剩余使用寿命预测[J]. 中国电机工程学报, 2021, 41(4): 1445-1457, 1550.
WANG Y Z, NI Y L, ZHENG Y Q, et al.Remaining useful life prediction of lithium-ion batteries based on support vector regression optimized and ant lion optimizations[J]. Proceedings of the CSEE, 2021, 41(4): 1445-1457, 1550.
[11] 杨战社, 王云浩, 孔晨再. 基于GWO-SVR的锂电池剩余使用寿命预测[J]. 电源学报, 2023, 21(2): 154-162.
YANG Z S, WANG Y H, KONG C Z.Prediction of remaining useful life of lithium-ion batteries based on GWO-SVR method[J]. Journal of power supply, 2023, 21(2): 154-162.
[12] 杨彦茹, 温杰, 史元浩, 等.基于CEEMDAN和SVR的锂离子电池剩余使用寿命预测[J]. 电子测量与仪器学报, 2020, 34(12): 197-205.
YANG Y R, WEN J, SHI Y H, et al.Remaining useful life prediction for lithium-ion battery based on CEEMDAN and SVR[J]. Journal of electronic measurement and instrumentation, 2020, 34(12): 197-205.
[13] 赵沁峰, 蔡艳平, 王新军. 锂电池在不同放电区间下的剩余寿命预测[J]. 中国测试, 2023, 49(3)159-165, 180.
ZHAO Q F, CAI Y P, WANG X J.Remaining useful life prediction of lithium battery under different discharge intervals[J]. China measurement & test, 2023, 49(3): 159-165, 180.
[14] WANG S L, JIN S Y, BAI D K, et al.A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries[J]. Energy reports, 2021, 7: 5562-5574.
[15] 庞晓琼, 王竹晴, 曾建潮, 等. 基于PCA-NARX的锂离子电池剩余使用寿命预测[J]. 北京理工大学学报, 2019, 39(4): 406-412.
PANG X Q, WANG Z Q, ZENG J C, et al.Prediction for the remaining useful life of lithium-ion battery based on PCA-NARX[J]. Transactions of Beijing Institute of Technology, 2019, 39(4): 406-412.
[16] 叶林峰, 石元博, 黄越洋. 基于BiGRU网络的锂电池寿命预测[J]. 电源技术, 2021, 45(5): 598-601.
YE L F, SHI Y B, HUANG Y Y.Lithium battery life prediction based on BiGRU network[J]. Chinese journal of power sources, 2021, 45(5): 598-601.
[17] 梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂离子电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219.
LIANG H F, YUAN P, GAO Y J.Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric power automation equipment, 2021, 41(10): 213-219.
[18] 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[19] HINTON G E, OSINDERO S, TEH Y W.A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554.
[20] 卢森露. 基于深度学习的在役钢桁架桥梁结构损伤识别研究[D]. 南京: 东南大学, 2021.
LU S L.Research on damage identification of existing steel truss bridge based on deep learning[D]. Nanjing: Southeast University, 2021.
[21] 黎晓烨. 基于深度学习特征选择的雷达目标一维距离像识别[D]. 成都: 电子科技大学, 2020.
LI X Y.Recognition of one-dimensional range profile of radar target based on deep learning feature selection[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[22] MOHAMED A R, DAHL G E, HINTON G.Deep belief networks for phone recognition[J]. Proc NIPS, 2009, 1(9): 3-9.
[23] 后麒麟, 曹亮, 单添敏, 等. 基于间接健康指标与回声状态网络的航空锂电池剩余使用寿命预测[J].测控技术, 2022, 41(7): 57-63.
HOU Q L, CAO L, SHAN T M, et al.Remaining useful life prediction of aviation lithium battery based on indirect health index and echo state network[J]. Measurement & control technology, 2022, 41(7): 57-63.

基金

冶金工业过程系统科学湖北省重点实验室项目(Y202201)

PDF(1651 KB)

Accesses

Citation

Detail

段落导航
相关文章

/