具有防融霜装置的蒸发器结霜特性及性能仿真研究

龚光彩, 安劲霖, 张明发, 胡文荃

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 442-449.

PDF(1832 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1832 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 442-449. DOI: 10.19912/j.0254-0096.tynxb.2022-1927

具有防融霜装置的蒸发器结霜特性及性能仿真研究

  • 龚光彩, 安劲霖, 张明发, 胡文荃
作者信息 +

STUDY OF FROSTING CHARACTERISTICS AND PERFORMANCE SIMULATION OF EVAPORATOR WITH DEFROSTING DEVICE

  • Gong Guangcai, An Jinlin, Zhang Mingfa, Hu Wenquan
Author information +
文章历史 +

摘要

以具有防融霜装置的蒸发器为研究对象,建立基于理想最小防融霜补热量和结霜量无量纲关联式的空气源热泵动态模型,并依据实验数据验证其精确性,通过数值模拟分析不同环境参数对具有防融霜装置的蒸发器性能的影响。结果表明:后置式与跨越式系统蒸发器换热系数要高于前置式与传统电辅热系统,霜层厚度更小,分布更均匀;当相对湿度一定时,蒸发器换热系数随温度升高而增大;当空气温度不变时,换热系数随相对湿度的下降而减小,霜层更均匀;温度对蒸发器换热系数的影响比相对湿度更大。

Abstract

Taking the evaporator with defrosting device as the research object, a dynamic model of air source heat pump(ASHP)based on the ideal minimum amount of supplemental heat required for defrosting and frost volume dimensionless correlation is established, and its accuracy is validated based on experimental data, the effects of different environmental factors on the performance of the evaporator is analyzed by numerical simulation. The results show that the heat transfer coefficient of the evaporator of the rear-mounted and cross-mounted system is greater than that of the front-mounted and traditional electric auxiliary heating system, and the thickness of the frost layer is smaller and more evenly distributed. When the relative humidity is certain, the heat transfer coefficient of the evaporator rises with the temperature. While the temperature is unchanged, this coefficient reduces with the decline of relative humidity, and the frost layer is more uniform. The influence of temperature to heat transfer coefficient of the evaporator is greater than that of relative humidity.

关键词

空气源热泵 / 蒸发器 / 动态模型 / 仿真模拟 / 防融霜装置 / 结霜特性

Key words

air source heat pumps / evaporators / dynamic models / computer simulation / defrosting device / frosting characteristics

引用本文

导出引用
龚光彩, 安劲霖, 张明发, 胡文荃. 具有防融霜装置的蒸发器结霜特性及性能仿真研究[J]. 太阳能学报. 2024, 45(4): 442-449 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1927
Gong Guangcai, An Jinlin, Zhang Mingfa, Hu Wenquan. STUDY OF FROSTING CHARACTERISTICS AND PERFORMANCE SIMULATION OF EVAPORATOR WITH DEFROSTING DEVICE[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 442-449 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1927
中图分类号: TU832.1   

参考文献

[1] 罗家恩. 翅片管式换热器结霜下的综合传热性能研究[D]. 广州: 广州大学, 2020.
LUO J E.Study on comprehensive heat transfer performance of finned tube heat exchanger under frost[D]. Guangzhou: Guangzhou University, 2020.
[2] 肖益民, 章程, 付祥钊. 冬季极端天气状况下空气源热泵运行实验研究[J]. 太阳能学报, 2010, 31(12): 1580-1584.
XIAO Y M, ZHANG C, FU X Z.Experimental studies on the operation of air source heat pump in extreme winter weather[J]. Acta energiae solaris sinica, 2010, 31(12): 1580-1584.
[3] 董建锴, 姜益强, 姚杨, 等. 空气源热泵过冷蓄能除霜蓄能特性实验研究[J]. 太阳能学报, 2012, 33(9): 1536-1540.
DONG J K, JIANG Y Q, YAO Y, et al.Experiment study on characteristic of thermal energy storage for air source heat pump defrosting using sub-cooling energy of refrigerant[J]. Acta energiae solaris sinica, 2012, 33(9): 1536-1540.
[4] 曲明璐, 陈剑波. 融化水流动对空气源热泵换向除霜影响的模型研究[J]. 太阳能学报, 2015, 36(7): 1678-1683.
QU M L, CHEN J B.A modeling study on the effects of downwords flowing of the melt frost on reverse cycle defrosting for an air source heat pump[J]. Acta energiae solaris sinica, 2015, 36(7): 1678-1683.
[5] 王剑锋, 张绍志, 冯仰浦, 等. 空气热源热泵动态结霜过程研究[J]. 低温工程, 1999(5): 44-49.
WANG J F, ZHANG S Z, FENG Y P, et al.Study on dynamic frosting of air-source heat pump[J]. Gryogenics, 1999(5): 44-49.
[6] 吴金玉, 陈江平. 低温工况下蒸发器结霜特性的数值模拟及试验研究[J]. 低温工程, 2008(1): 33-37.
WU J Y, CHEN J P.Numerical analysis and experiment of frosting quality of finned-tube evaporators in low temperature condition[J]. Cryogenics, 2008(1): 33-37.
[7] 肖宏新, 陈观生, 罗超鸿, 等. 三排变片距翅片盘管蒸发器结霜特性研究[J]. 建筑热能通风空调, 2022, 41(3): 29-33.
XIAO H X, CHEN G S, LUO C H, et al.A characteristics study on frost growth of different fin pitch 3-rows evaporator[J]. Building energy & environment, 2022, 41(3): 29-33.
[8] QU M L, XIA L, DENG S M, et al.An experimental investigation on reverse-cycle defrosting performance for an air source heat pump using an electronic expansion valve[J]. Applied energy, 2012, 97: 327-333.
[9] 刘志强, 汤广发, 张国强. 空气源热泵蒸发器结霜过程仿真研究[J]. 暖通空调, 2004, 34(9): 20-24.
LIU Z Q, TANG G F, ZHANG G Q.Simulation study on vaporizer frosting process in air-cooling heat pumps[J]. HV & AC, 2004, 34(9): 20-24.
[10] 姚杨, 姜益强, 马最良. 空气源热泵冷热水机组结霜工况下数学模型的建立与求解[J]. 湖南大学学报(自然科学版), 2006, 33(1): 29-32.
YAO Y, JIANG Y Q, MA Z L.Development and solution of mathematical model for air source heat pump water chiller/heaters under frosting[J]. Journal of Hunan University (natural sciences), 2006, 33(1): 29-32.
[11] 唐瑾晨. 空气源热泵防融霜过程的热力学与传热特性研究[D]. 长沙: 湖南大学, 2016.
TANG J C.Study of thermodynamics and heat transfer on frost prevention and retardation of air source heat pump[D]. Changsha: Hunan University, 2016.
[12] 吕东彦. 空气源热泵结霜工况性能分析与实验研究[D]. 长沙: 湖南大学, 2008.
LYU D Y.Theoretical analysis and experimental research of air source heat pump performance under frosting condition[D]. Changsha: Hunan University, 2008.
[13] 杨宾. R410A热泵空调器结霜/除霜特性的数值模拟与实验研究[D]. 天津: 天津商业大学, 2007.
YANG B.Numerical simulation and experimental study on the frosting/defrosting characteristics of the heat pump using alternative refrigerant R410A[D]. Tianjin: Tianjin University of Commerce, 2007.
[14] 周富玉. 单、双级压缩空气源热泵的热力学仿真与研究对比分析[D]. 长沙: 湖南大学, 2018.
ZHOU F Y.Thermodynamic simulation and comparative analysis of single and double stage compressed air source heat pump[D]. Changsha: Hunan University, 2018.

基金

湖南省重点领域研发计划(2020DK2003); 湖南省科技成果转化及产业化计划(2020GK2077)

PDF(1832 KB)

Accesses

Citation

Detail

段落导航
相关文章

/