基于GSA的风电叶片主梁初始损伤的敏感因素分析

孙宁, 周勃, 郑皓成, 李晖

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 181-189.

PDF(2342 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2342 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 181-189. DOI: 10.19912/j.0254-0096.tynxb.2022-1929

基于GSA的风电叶片主梁初始损伤的敏感因素分析

  • 孙宁1, 周勃1,2, 郑皓成1, 李晖3
作者信息 +

SENSITIVITY FACTOR ANALYSIS ON INITIAL DAMAGE OF WIND TURBINE BLADE SPAR BASED ON GSA

  • Sun Ning1, Zhou Bo1,2, Zheng Haocheng1, Li Hui3
Author information +
文章历史 +

摘要

针对风电叶片主梁褶皱缺陷演化为初始损伤模式的不确定性问题,采用高斯概率分布函数确定7个因素的分布信息,根据褶皱缺陷在拉伸加载时的应力数据,改进Sobol'算法采用拉丁超立方法获取样本点训练BP神经网络,采用Kullback-Leibler散度计算最大和非最大损伤处的应变余能密度相对熵,分别作为基体开裂和纤维断裂的敏感度响应指标。结果表明,基体损伤和纤维断裂的高敏感因素均为载荷幅值、纤维含量、基纤模量比和褶皱高宽比,但基纤模量比与褶皱高宽比的排序有所不同,说明叶片主梁材料性能和缺陷特征形貌对初始损伤模式的作用程度不同。最后建立含褶皱的GFPR层合板有限元模型,模拟结果验证了全局敏感度分析方法的准确性。

Abstract

Aiming at the issue of uncertainty in the initial damage evolution of wind turbine blade spars with wrinkle defects, Gaussian probability distribution function is used to determine the distribution information of seven factors. The stress data of wrinkle defects under tensile loading is used to improve Sobol's algorithm through Latin hypercube sampling, which enables the acquisition of sample points and the training of a BP neural network. The relative entropy of strain residual energy density at maximum and non-maximum damage sites is calculated using Kullback-Leibler divergence. These values serve as sensitivity response indexes for matrix cracking and fiber fracture, respectively. The results show that loading amplitude is the most sensitive factor for both matrix damage and fiber fracture, followed by fiber content, matrix-to-fiber modulus ratio, and wrinkle height-to-width ratio. However, the order of the matrix-to-fiber modulus ratio and wrinkle height-to-width ratio is different. The related result shows that the blade spar's material properties and the defect feature's appearance have different effects on the initial damage mode. Finally, the finite element model of GFPR laminate with wrinkle is established. The simulation results verify the accuracy of the global sensitivity analysis method.

关键词

风力机叶片 / 疲劳损伤 / 敏感度分析 / KL散度 / 神经网络

Key words

wind turbine blades / fatigue damage / sensitivity analysis / KL divergence / neural network

引用本文

导出引用
孙宁, 周勃, 郑皓成, 李晖. 基于GSA的风电叶片主梁初始损伤的敏感因素分析[J]. 太阳能学报. 2024, 45(4): 181-189 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1929
Sun Ning, Zhou Bo, Zheng Haocheng, Li Hui. SENSITIVITY FACTOR ANALYSIS ON INITIAL DAMAGE OF WIND TURBINE BLADE SPAR BASED ON GSA[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 181-189 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1929
中图分类号: TK83   

参考文献

[1] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 175-189.
[2] 安宗文, 马军霞, 马强, 等. 风电叶片全尺寸疲劳试验加载方法研究[J]. 太阳能学报, 2021, 42(10): 250-257.
AN Z W, MA J X, MA Q, et al.Study on loading scheme for full-scale fatigue test of wind turbine blades[J]. Acta energiae solaris sinica, 2021, 42(10): 250-257.
[3] 王同光, 李慧, 陈程, 等. 风力机叶片结构设计[M]. 北京: 科学出版社, 2015.
WANG T G, LI H, CHEN C, et al.Structure design for wind turbine blades[M]. Beijing: Science Press, 2015.
[4] ZHANG J H, LIU Y Q, TIAN D, et al.Optimal power dispatch in wind farm based on reduced blade damage and generator losses[J]. Renewable and sustainable energy reviews, 2015, 44: 64-77.
[5] BRUNBAUER J, PINTER G.Effects of mean stress and fibre volume content on the fatigue-induced damage mechanisms in CFRP[J]. International journal of fatigue, 2015, 75: 28-38.
[6] 朱文墨, 李刚, 杨小平, 等. 连续纤维增强树脂复合材料纵向压缩强度预测模型的发展及其影响因素[J]. 复合材料学报, 2020, 37(1): 1-15.
ZHU W M, LI G, YANG X P, et al.Development of prediction model and influencing factors of longitudinal compressive strength for continuous fiber reinforced polymer composites[J]. Acta materiae compositae sinica, 2020, 37(1): 1-15.
[7] MUKHOPADHYAY S, JONES M I, HALLETT S R.Tensile failure of laminates containing an embedded wrinkle; numerical and experimental study[J]. Composites part A: applied science and manufacturing, 2015, 77: 219-228.
[8] 陆媚, 胡祎乐, 余音. 复合材料双波纹面外褶皱缺陷细观力学分析方法[J]. 复合材料学报, 2023, 40(2): 1129-1141.
LU M, HU Y L, YU Y.Micro-mechanics analytical method for composite out-of-plane wrinkle with double fiber-waviness[J]. Acta materiae compositae sinica, 2023, 40(2): 1129-1141.
[9] 陈一凡, 张根保, 冉琰, 等. 面向元动作的机械传动系统可靠性分配方法[J]. 中国机械工程, 2021, 32(17): 2032-2039.
CHEN Y F, ZHANG G B, RAN Y, et al.Meta-action-oriented reliability allocation method of mechanical transmission systems[J]. China mechanical engineering, 2021, 32(17): 2032-2039.
[10] ZHAO Z, XU L A, GAO J M, et al.Multi-objective optimization of parameters of channels with staggered frustum of a cone based on response surface methodology[J]. Energies, 2022, 15(3): 1240.
[11] CABRERA J M, RAJPUT A, IQBAL M A, et al.Performance of various thin concrete slabs under projectile impact: Sobol's sensitivity analysis with aid of metamodels[J]. Thin-walled structures, 2022, 172: 108739.
[12] 张峰峰, 张欣, 陈龙, 等. 采用改进遗传算法优化神经网络的双目相机标定[J]. 中国机械工程, 2021, 32(12): 1423-1431.
ZHANG F F, ZHANG X, CHEN L, et al.Binocular camera calibration based on BP neural network optimized by improved genetic algorithm[J]. China mechanical engineering, 2021, 32(12): 1423-1431.
[13] MISHNAEVSKY L.Repair of wind turbine blades: review of methods and related computational mechanics problems[J]. Renewable energy, 2019, 140: 828-839.
[14] 申川川. 纤维增强复合板缺陷响应特征及其在光-力学检测中的应用[D]. 杭州: 浙江大学, 2021.
SHEN C C.Research on response characteristics of defects in fiber reinforced composite plates and its application in optics-mechanics detection[D]. Hangzhou: Zhejiang University, 2021.
[15] 钱若力, 穆晓光, 王轩, 等. 含褶皱缺陷玻璃纤维增强复合材料层合板拉伸渐进失效分析[J]. 复合材料科学与工程, 2020(7): 13-19, 52.
QIAN R L, MU X G, WANG X, et al.Progressive failure analysis of tensile strength of glass fiber reinforced composite laminates with wrinkle defects[J]. Composites science and engineering, 2020(7): 13-19, 52.
[16] 沈浩杰. 复合材料多向损伤理论与试验验证[D]. 南京: 南京航空航天大学, 2016.
SHEN H J.Multidirectional damage theory of composite laminates with experimental verification[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
[17] TEIXEIRA R, O'CONNOR A, NOGAL M. Probabilistic sensitivity analysis of offshore wind turbines using a transformed Kullback-Leibler divergence[J]. Structural safety, 2019, 81: 101860.
[18] 张禹, 李东升, 董小野, 等. 基于改进BP神经网络面向STEP-NC 2.5D制造特征的智能宏观工艺规划[J]. 机械工程学报, 2020, 56(1): 148-156.
ZHANG Y, LI D S, DONG X Y, et al.The intelligent macro-process planning based on an improved BP neural network for STEP-NC 2.5D manufacturing features[J]. Journal of mechanical engineering, 2020, 56(1): 148-156.
[19] 杨震, 陈翔燕, 刘诚, 等. 一种基于BP神经网络的太阳能-土壤源热泵复合系统供暖策略仿真[J]. 太阳能学报, 2022, 43(8): 224-229.
YANG Z, CHEN X Y, LIU C, et al.Simulation on a heating strategy based on BP neural network of solar-ground source heat pump composite system[J]. Acta energiae solaris sinica, 2022, 43(8): 224-229.
[20] GLOROT X, BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[J]. Journal of machine learning research, 2010, 9: 249-256.
[21] 王涛, 李勐, 孟丽岩, 等. 统计容积卡尔曼滤波器的混合试验模型更新方法[J]. 振动与冲击, 2022, 41(11): 72-82, 155.
WANG T, LI M, MENG L Y, et al.Hybrid Test model updating method based on statistical cubature Kalman filter[J]. Journal of vibration and shock, 2022, 41(11): 72-82, 155.
[22] 谢恩, 马义中, 刘丽君, 等. 数据污染情形下的全局灵敏度分析[J]. 计算机集成制造系统, 2022, 28(9): 2927-2938.
XIE E, MA Y Z, LIU L J, et al.Global sensitivity analysis under data contamination[J]. Computer integrated manufacturing systems, 2022, 28(9): 2927-2938.

基金

国家自然科学基金(52175105; 52175079); 辽宁省教育厅高等学校基本科研项目(LJKMZ20220486)

PDF(2342 KB)

Accesses

Citation

Detail

段落导航
相关文章

/