与核反应堆耦合的新型制绿氨模型

黄靖钟, 刘斌, 潘良明, 朱隆祥, 邓佳佳, 折晓会

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 365-372.

PDF(1717 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1717 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 365-372. DOI: 10.19912/j.0254-0096.tynxb.2022-1933

与核反应堆耦合的新型制绿氨模型

  • 黄靖钟1, 刘斌1, 潘良明2, 朱隆祥2, 邓佳佳3, 折晓会1
作者信息 +

A NOVEL MODEL OF GREEN AMMONIA PRODUCTION COUPLED WITH NUCLEAR REACTOR

  • Huang Jingzhong1, Liu Bin1, Pan Liangming2, Zhu Longxiang2, Deng Jiajia3, She Xiaohui1
Author information +
文章历史 +

摘要

氨气是高效氢能载体,可有效解决氢能载运过程中安全性和经济性难题。核能-碘硫热化学循环制氢是实现无污染大规模工业制绿氢的可行途径。目前对核能-碘硫热化学循环制氢的研究集中于核热耦合问题,未考虑氢气产生后的载运问题。基于此,提出一种核-氨-氢新模型。此模型首先进行核能制氢,再通过核热将其转化为氨气,优化核热的梯级利用并解决氢储运问题。通过Aspen Plus软件模拟全流程,分析能耗、效率和成本。

Abstract

Ammonia is a highly efficient hydrogen energy carrier, which can effectively solve the safety and economic difficulties in the process of hydrogen energy transport. Nuclear energy-iodine sulfur thermochemical cycle hydrogen production is a feasible way to realize pollution-free large-scale industrial green hydrogen production. The current research on nuclear-iodine sulfur thermochemical cycle hydrogen production focuses on the nuclear-thermal coupling problem, without considering the hydrogen transport problem after generation. Based on this, a novel model of nuclear-ammonia-hydrogen is proposed . In this model firstly hydrogen is produced from nuclear energy and then it is converted into ammonia by nuclear heat. This model optimizes the utilization of nuclear heat and solves the hydrogen storage and transportation problem. The entire process was simulated by Aspen Plus software and the energy consumption, thermal efficiency and cost are analyzed.

关键词

核能 / 制氢 / 热效率 / 碘硫循环 / 绿氨 / 核-氨-氢新型模型

Key words

nuclear energy / hydrogen production / thermal efficiency / iodine-sulfur cycle / green ammonia / nuclear-ammonia-hydrogen model

引用本文

导出引用
黄靖钟, 刘斌, 潘良明, 朱隆祥, 邓佳佳, 折晓会. 与核反应堆耦合的新型制绿氨模型[J]. 太阳能学报. 2024, 45(4): 365-372 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1933
Huang Jingzhong, Liu Bin, Pan Liangming, Zhu Longxiang, Deng Jiajia, She Xiaohui. A NOVEL MODEL OF GREEN AMMONIA PRODUCTION COUPLED WITH NUCLEAR REACTOR[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 365-372 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1933
中图分类号: TL334   

参考文献

[1] 滕霖, 尹鹏博, 聂超飞, 等. “氨-氢”绿色能源路线及液氨储运技术研究进展[J]. 油气储运, 2022, 41(10): 115-1129.
TENG L, YIN P B, NIE C F, et al.Research progress on “ammonia-hydrogen” green energy roadmap and storage & transportation technology of liquid ammonia[J]. Oil & gas storage and transportation, 2022, 41(10): 115-1129.
[2] Hydrogen as an energy carrier and its production by nuclear power [R]. IAEA-TECDDC-1085, 1999.
[3] ROGNER H H.Building sustainable energy systems:the rode of nuclear-derived hydrogen[C]// Nuclear Production of Hydrogen. Paris, France, 2000.
[4] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[5] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[6] AZIZ M, WIJAYANTA A T, NANDIYANTO A B D. Ammonia as effective hydrogen storage: a review on production, storage and utilization[J]. Energies, 2020, 13(12): 3062.
[7] FORSBERG C.Meeting low-carbon industrial heat demand with high-temperature reactors using co-generation and heat storage[J]. Transactions of the American Nuclear Society, 2019, 120.
[8] BROWN L C, BESENBRUCH G E, LENTSCH R D, et al.High efficiency generation of hydrogen fuels using nuclear power[R]. FG03-99SF21888, 2003.
[9] 曲新鹤, 赵钢, 王捷, 等. 基于核能制氢的氢电联产系统能量梯级利用研究[J]. 原子能科学技术, 2021, 55(增刊1): 37-44.
QU X H, ZHAO G, WANG J, et al.Study on energy cascade utilization of hydrogen-electricity cogeneration system based on nuclear hydrogen production[J]. Atomic energy science and technology, 2021, 55(S1): 37-44.
[10] GAUTHIER J C, BRINKMANN G, COPSEY B, et al.ANTARES: the HTR/VHTR project at framatome ANP[J]. Nuclear engineering and design, 2006, 236(5/6): 526-533.
[11] KUNITOMI K, YAN X, NISHIHARA T, et al.JAEA'S VHTR for hydrogen and electricity cogeneration: GTHTR300C[J]. Nuclear engineering and technology, 2007, 39(1): 9-20.
[12] SATO H, KUBO S, YAN X L, et al.Control strategies for transients of hydrogen production plant in VHTR cogeneration systems[J]. Progress in nuclear energy, 2011, 53(7): 1009-1016.
[13] SATO H, NOMOTO Y, HORII S, et al.HTTR-GT/H2 test plant-system performance evaluation for HTTR gas turbine cogeneration plant[J]. Nuclear engineering and design, 2018, 329: 247-254.
[14] SAKABA N, KASAHARA S, ONUKI K, et al.Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR[J]. International journal of hydrogen energy, 2007, 32(17): 4160-4169.
[15] VERFONDERN K, YAN X, NISHIHARA T, et al.Safety concept of nuclear cogeneration of hydrogen and electricity[J]. International journal of hydrogen energy, 2017, 42(11): 7551-7559.
[16] ZHANG P, CHEN S Z, WANG L J, et al.Overview of nuclear hydrogen production research through iodine sulfur process at INET[J]. International journal of hydrogen energy, 2010, 35(7): 2883-2887.
[17] 单彤文, 宋鹏飞, 李又武, 等. 制氢、储运和加注全产业链氢气成本分析[J]. 天然气化工(C1化学与化工), 2020, 45(1): 85-90, 96.
SHAN T W, SONG P F, LI Y W, et al.Cost analysis of hydrogen from the perspective of the whole industrial chain of production, storage, transportation and refueling[J]. Natural gas chemical industry, 2020, 45(1): 85-90, 96.
[18] JUANGSA F B, IRHAMNA A R, AZIZ M.Production of ammonia as potential hydrogen carrier: review on thermochemical and electrochemical processes[J]. International journal of hydrogen energy, 2021, 46(27): 14455-14477.
[19] VOJVODIC A, MEDFORD A J, STUDT F, et al.Exploring the limits: a low-pressure, low-temperature Haber-Bosch process[J]. Chemical physics letters, 2014, 598: 108-112.
[20] ZHU Q Q, ZHANG Y W, YING Z, et al.Occurrence of the Bunsen side reaction in the sulfur-iodine thermochemical cycle for hydrogen production[J]. Journal of Zhejiang University SCIENCE A, 2013, 14(4): 300-306.
[21] YING Z, YANG J Y, ZHENG X Y, et al.Energy and exergy analyses of a novel sulfur-iodine cycle assembled with HI-I2-H2O electrolysis for hydrogen production[J]. International journal of hydrogen energy, 2021, 46(45): 23139-23148.
[22] ÖZTÜRK I T, HAMMACHE A, BILGEN E. An improved process for H2SO4 decomposition step of the sulfur-iodine cycle[J]. Energy conversion and management, 1995, 36(1): 11-21.
[23] VITART X, CARLES P, ANZIEU P.A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat[J]. Progress in nuclear energy, 2008, 50(2-6): 402-410.
[24] HUANG C P, T-RAISSI A.Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part I: decomposition of sulfuric acid[J]. Solar energy, 2005, 78(5): 632-646.
[25] GUO H F, ZHANG P, CHEN S Z, et al.Review of thermodynamic properties of the components in HI decomposition section of the iodine-sulfur process[J]. International journal of hydrogen energy, 2011, 36(16): 9505-9513.
[26] GONZÁLEZ RODRÍGUEZ D, BRAYNER DE OLIVEIRA LIRA C A, GARCÍA PARRA L R, et al. Computational model of a sulfur-iodine thermochemical water splitting system coupled to a VHTR for nuclear hydrogen production[J]. Energy, 2018, 147: 1165-1176.
[27] KUBO S, NAKAJIMA H, KASAHARA S, et al.A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process[J]. Nuclear engineering and design, 2004, 233(1-3): 347-354.
[28] NI H, PENG W, QU X H, et al.Thermodynamic analysis of a novel hydrogen-electricity-heat polygeneration system based on a very high-temperature gas-cooled reactor[J]. Energy, 2022, 249: 123695.
[29] 刘绍军, 马建新, 周伟, 等. 小型加氢站网络的成本分析[J]. 天然气化工, 2006, 31(5): 44-48.
LIU S J, MA J X, ZHOU W, et al.Cost analysis for a mini-network of hydrogen refueling stations[J]. Natural gas chemical industry, 2006, 31(5): 44-48.

基金

河北省省属高校基本科研业务费(ZCT202002); 河北省科学院科技计划(2023PF03)

PDF(1717 KB)

Accesses

Citation

Detail

段落导航
相关文章

/