为研究上游风力机叶轮直径增大和轮毂高度抬升对下游风力机气动性能影响,采用计算流体力学方法对串列水平轴风力机三维流场进行模拟,以揭示上游风力机叶轮尺寸增大和轮毂高度抬升对下游风力机气动性能影响规律。研究结果表明:增大上游风力机叶轮直径,会削减下游临近机组输出功率,增加机组在低频,1倍、2倍、3倍轴频推力脉动,增大机组疲劳载荷;随着风力机间距的增加,增大叶轮直径对12D范围外机组输出功率影响可忽略不计,但机组疲劳载荷在低频和1倍轴频仍有明显的增大。抬高上游机组轮毂高度,机组较近时,可使下游风力机避开一部分尾流,显著提高下游风力机的输出功率,但也会使风力机叶轮在旋转一周过程中产生较大的叶片推力脉动;当风力机间距较远时,抬高塔架高度有利于尾流恢复,进而提高下游机组输出功率,降低机组疲劳载荷。
Abstract
In order to study the effect of the increase of rotor diameter and the elevation of hub height of the upstream wind turbine on the aerodynamic performance of the downstream wind turbine, the three-dimensional flow fields around two tandem horizontal-axis wind turbines were simulated by using the computational fluid dynamics method. The influence mechanism of upstream wind turbine rotor diameter and hub height on the aerodynamic performance of the downstream wind turbine was explored. The results show that increasing the upstream turbine rotor diameter can reduce the output power and increase the thrust pulsation of the downstream wind turbine at low frequency including 1APF, 2APF and 3APF. Besides, this can increase the fatigue load of the downstream wind turbine. With the increase of the distance between two wind turbines, the influence of increasing upstream turbine rotor diameter on the output power of wind turbine outside the 12D range can be ignored, and the fatigue load of wind turbine outside the 12D range still increases significantly at low frequency and 1APF. When the wind turbine is closed, raising the upstream turbine hub height can make the downstream wind turbine avoid part of the wake and significantly improve the output power of the downstream wind turbine, although a large alternating load can be induced when the blade in the one-period rotation process. When the distance between two turbines is relatively far, raising the upstream turbine hub height is beneficial to wake recovery. Furthermore, this can increase the output power and reduce the fatigue load of the downstream turbine.
关键词
风力机 /
叶轮直径 /
轮毂高度 /
数值模拟 /
气动性能 /
疲劳载荷
Key words
wind turbines /
rotor diameter /
hub height /
numerical simulation /
aerodynamic performance /
fatigue load
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中国可再生能源学会风能专业委员会. 2021年中国风电吊装容量统计简报[J]. 风能, 2022(5): 38-52.
Wind Energy Professional Committee of China Renewable Energy Society. Statistical brief report of wind power hoisting capacity in China in2021[J]. Wind energy, 2022(5): 38-52.
[2] JENSEN N.A note on wind generator interaction[R]. Technical report Ris-M-2411,1983.
[3] FRANDSEN S, BARTHELMIE R, PRYOR S, et al.Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind energy, 2006, 9(1/2): 39-53.
[4] 宗豪华, 孙恩博. 水平轴风力机主动尾流控制综述[J]. 空气动力学学报, 2022, 40(4): 51-68.
ZONG H H, SUN E B.Reivew of active wake control for horizontal-axis wind turbines[J]. Acta aerodynamica sinica, 2022, 40(4): 51-68.
[5] 李雄威, 徐家豪, 李庚达, 等. 一种新修正的风电机组尾流分析模型[J]. 太阳能学报, 2022, 43(8): 260-265.
LI X W, XU J H, LI G D, et al.A new modified analytical model for wind-turbine wakes[J]. Acta energiae solaris sinica, 2022, 43(8): 260-265.
[6] 赵家瑜, 史绍平, 闫姝, 等. 基于动网格对风力机尾流的数值模拟[J]. 太阳能学报, 2016, 37(12): 3170-3177.
ZHAO J Y, SHI S P, YAN S, et al.Numerical simulation of wind turbine wake flow based on dynamic mesh[J]. Acta energiae solaris sinica, 2016, 37(12): 3170-3177.
[7] 杨从新, 何攀, 张旭耀, 等. 轮毂高度差或上游风力机偏航角对风力机总功率输出的影响[J]. 农业工程学报, 2018, 34(22): 155-161.
YANG C X, HE P, ZHANG X Y, et al.Influence of hub height difference or upstream wind turbine yaw angle on wind turbines total power output[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 155-161.
[8] 艾勇, 程萍, 万德成. 基于致动线模型的错列式两风机尾流场数值模拟[J]. 海洋工程, 2018, 36(1): 27-36.
AI Y, CHENG P, WAN D C.Numerical simulation of wake interaction between two offset-line model wind turbines based on actuator line model[J]. The ocean engineering, 2018, 36(1): 27-36.
[9] 高琳越. 风电机组尾流干涉效应数值模拟研究[D]. 北京: 华北电力大学, 2016.
GAO L Y.Numerical simulation of wind turbine wake interference effects[D]. Beijing: North China Electric Power University, 2016.
[10] 周天熠, 谭剑锋, 孙义鸣, 等. 三维连续丘陵对NREL风力机功率特性的影响分析[J]. 太阳能学报, 2021, 42(4): 359-365.
ZHOU T Y, TAN J F, SUN Y M, et al.Analysis of influence of three-dimensional continuous hill on power characteristics of NREL wind turbine[J]. Acta energiae solaris sinica, 2021, 42(4): 359-365.
[11] SHIH T H, LIOU W W, SHABBIR A, et al.A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & fluids, 1995, 24(3): 227-238.
[12] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. Technical Report No.NREL/TP-500-38060, 2009
[13] 马小川. 基于叶尖小翼的MW级风力机气动性能研究[D]. 兰州: 兰州理工大学, 2022.
MA X C.Research on aerodynamic performance of MW-class wind turbines with winglets[D]. Lanzhou: Lanzhou University of Technology, 2022.
[14] POPE S B.Turbulent flows[J]. Measurement science and technology, 2001, 12(11): 2020-2021.
基金
国家自然科学基金(52001043); 中央高校基本科研业务费专项资金(DUT22GF202)