取月桂酸(LA)和硬脂酸(SA)作为相变材料(PCM),绘制LA/SA的二元平衡相图。研究发现,当LA与SA质量比为7∶3时,复合PCM达到最低共熔温度31.2 ℃,适用于建筑围护结构。并将纳米氧化铜(nano-CuO)、纳米二氧化硅(nano-SiO2)作为导热增强材料加入到复合PCM中,通过实验对比不同分散剂种类、不同纳米颗粒与分散剂比例、不同纳米颗粒浓度对实验材料稳定性和均匀性的影响,并基于傅里叶变换红外光谱(FT-IR)、差示扫描热量(DSC)测试、导热系数测试以及吸放热过程分析对其热物性进行表征和研究。实验结果表明:0.2%nano-CuO/PCM具有较好的稳定性,熔化潜热和凝固潜热相较于复合PCM分别降低了5.91%、5.44%;导热系数提高了30.0%。
Abstract
In this paper, lauric acid (LA) and stearic acid (SA) were selected as phase change materials (PCMs), and the binary equilibrium phase diagram of LA/SA was drawn. It is found that when the ratio of LA/SA is 7∶3, the composite PCM reaches the lowest eutectic temperature of 31.2 ℃, which is suitable for building envelope. Nano-copper oxide (nano-CuO) and nano-silicon dioxide (nano-SiO2) were added into the composite PCM as thermal conductivity enhancing materials. The effects of different dispersants, different proportions of nanoparticles and dispersants, and different concentrations of nanoparticles on the stability and uniformity of experimental materials were compared. Based on Fourier transform infrared spectroscopy test (FT-IR), differential scanning calorimetry (DSC), thermal conductivity measurement, and thermal absorption and release process analysis, the thermal properties were characterized and studied. The experimental results show that 0.2%nano-CuO/PCM has good stability, and the latent heat of melting and solidification decreases by 5.91% and 5.44%, respectively, and the thermal conductivity increases by 30.0% compares with that of composite PCM.
关键词
相变材料 /
纳米颗粒 /
相变潜热 /
热储存 /
热传导 /
吸放热速率
Key words
phase change materials /
nanomaterials /
latent heat /
thermal energy storage /
thermal conductivity /
endothermic/exthermic rate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HAN L, ZHANG X L, JI J, et al.Research progress on the influence of nano-additives on phase change materials[J]. Journal of energy storage, 2022, 55: 105807.
[2] ZHOU D, ZHAO C Y, TIAN Y.Review on thermal energy storage with phase change materials (PCMs) in building applications[J]. Applied energy, 2012, 92: 593-605.
[3] KHAN M I, ASFAND F, AL-GHAMDI S G. Progress in research and development of phase change materials for thermal energy storage in concentrated solar power[J]. Applied thermal engineering, 2023, 219: 119546.
[4] 陈文朴, 章学来, 丁锦宏, 等. 癸酸-正辛酸低温相变材料的制备和循环性能[J]. 制冷学报, 2016, 37(3): 12-16.
CHEN W P, ZHANG X L, DING J H, et al.Preparation and cycling performance of capric acid-caprylic acid as cold storage phase change material[J]. Journal of refrigeration, 2016, 37(3): 12-16.
[5] 杨致远, 董建锴, 姜益强, 等. 癸酸—月桂酸二元复合相变储能材料循环热稳定性[J]. 建筑科学, 2015, 31(2): 60-64.
YANG Z Y, DONG J K, JIANG Y Q, et al.Thermal stability of binary multiple decanoic acid-lauric acid as phase change material[J]. Building science, 2015, 31(2): 60-64.
[6] SARAVANAKUMAR P T, ARUNKUMAR S P, BRAILSON MANSINGH B, et al.Investigating the effect of thermal cycling on thermal characteristics of the nano-silica based phase changing material (PCM)[J]. Materials today: proceedings, 2022, 50: 1502-1507.
[7] BASKAR I, CHELLA-PANDIAN M, JEYASUBRAMANIAN K.LA-PA eutectic/nano- SiO2 composite phase change material for thermal energy storage application in buildings[J]. Construction and building materials, 2022, 338: 127663.
[8] LU B H, ZHANG Y X, ZHANG J Y, et al.Preparation, optimization and thermal characterization of paraffin/nano-Fe3O4 composite phase change material for solar thermal energy storage[J]. Journal of energy storage, 2022, 46: 103928.
[9] TYAGI V V, BUDDHI D.PCM thermal storage in buildings: a state of art[J]. Renewable and sustainable energy reviews, 2007, 11(6): 1146-1166.
[10] ZHOU S Q, BAI F, RAZAQPUR G, et al.Effect of key parameters on the transient thermal performance of a building envelope with Trombe wall containing phase change material[J]. Energy and buildings, 2023, 284: 112879.
[11] LI J, ZHANG Y, ZHU Z Y, et al.Thermal comfort in a building with Trombe wall integrated with phase change materials in hot summer and cold winter region without air conditioning[J]. Energy and built environment, 2024, 5(1): 58-69.
[12] WANG J, LI Y X, WANG Y, et al.Experimental investigation of heat transfer performance of a heat pipe combined with thermal energy storage materials of CuO-paraffin nanocomposites[J]. Solar energy, 2020, 211: 928-937.
[13] 蔡迪, 李静, 焦乃勋. 纳米石墨烯片-正十八烷复合相变材料制备及热物性研究[J]. 物理学报, 2019, 68(10): 43-51.
CAI D, LI J, JIAO N X.Preparation and thermophysical properties of graphene nanoplatelets-octadecane phase change composite materials[J]. Acta physica sinica, 2019, 68(10): 43-51.
[14] 陈之帆, 孙志高, 汤小蒙, 等. 纳米Fe2O3/硬脂酸/十八醇纳米复合相变蓄热材料的性能研究[J]. 太阳能学报, 2021, 42(3): 422-427.
CHEN Z F, SUN Z G, TANG X M, et al.Study on properties of ferumoxytol/stearic acid/stearyl alcohol composite phase change heat storage material[J]. Acta energiae solaris sinica, 2021, 42(3): 422-427.
[15] ZHANG W Y, ZHANG X M, ZHANG X G, et al.Lauric-stearic acid eutectic mixture/carbonized biomass waste corn cob composite phase change materials: preparation and thermal characterization[J]. Thermochimica acta, 2019, 674: 21-27.
[16] 王赛, 孙志高, 李娟, 等. 月桂酸/十四醇纳米复合相变材料的制备及性能研究[J]. 功能材料, 2019, 50(11): 11166-11171, 11177.
WANG S, SUN Z G, LI J, et al.Preparation and properties of lauric acid/tetradecanol nanocomposite phase change materials[J]. Journal of functional materials, 2019, 50(11): 11166-11171, 11177.
[17] 费华, 顾庆军, 王林雅, 等. 癸酸-棕榈酸二元复合相变材料的相变特性研究[J]. 太阳能学报, 2020, 41(1): 80-85.
FEI H, GU Q J, WANG L Y, et al.Phase transition properties of capric-palmitic acid binary composite phase change materials[J]. Acta energiae solaris sinica, 2020, 41(1): 80-85.
[18] 杜文清, 费华, 顾庆军, 等. 癸酸-石蜡二元低共熔复合相变材料的制备及性能研究[J]. 太阳能学报, 2021, 42(7): 251-256.
DU W Q, FEI H, GU Q J, et al.Preparation and properties of capric acid-paraffin binary low eutectic composite phase change materials[J]. Acta energiae solaris sinica, 2021, 42(7): 251-256.
基金
国家自然科学基金(52278111); 江苏省自然科学基金面上项目(BK20221315); 江苏省高等学校自然科学研究项目(18KJB560009)