为分析第三代太阳能热发电技术熔盐与低温罐选材的相容性,该文以一种低熔点(142 ℃)、高分解温度(>700 ℃)的混合熔盐为腐蚀环境,通过静态腐蚀实验研究碳钢(A515Gr70)和两种低合金钢(Q345R、15CrMoR)在450 ℃混合熔盐中的腐蚀行为。采用失重法测量不同金属的腐蚀速率。通过扫描电子显微镜(SEM)、X射线衍射(XRD)和能谱仪(EDS)对金属腐蚀表面的微观形貌、相组成和微区成分进行分析。结果表明:碳钢不含有耐腐蚀元素Cr、Ni和Mo,腐蚀速率最大。15CrMoR表面氧化层以疏松多孔的Fe2O3为主,不能阻止熔盐浸入金属基体内部,导致氧化程度加重,耐腐蚀性较差。Q345R表面氧化层由致密性好的FeCr2O4、NiO和TiO2组成,对金属基体具有保护性,耐腐蚀性最佳。
Abstract
In order to analyze the compatibility between the molten salt of the third generation solar thermal power generation technology and the materials of cryogenic tank,this article takes a mixed molten salt with low melting point (142 ℃) and high decomposition temperature (>700 ℃) as the corrosion environment,and studies the corrosion behavior of carbon steel (A515Gr70) and two low alloy steels (Q345R,15CrMoR) in the mixed molten salt at 450 ℃ through static corrosion experiments. The weight-loss method is adopted to measure the corrosion rates of different metals. The microstructure, phase composition and micro-area composition of the metal corrosion surface are analyzed by SEM, XRD and EDS. The results show that carbon steel does not contain corrosion resistant elements Cr, Ni and Mo,and the corrosion rate is the highest.The oxide layer on the surface of 15CrMoR is mainly composed of porous Fe2O3,which cannot prevent molten salt from immersing into the metal matrix,resulting in increased oxidation and poor corrosion resistance.The oxide layer on the surface of Q345R is composed of FeCr2O4, NiO and TiO2 with good compactness, which has a protective effect on the metal matrix and has the best corrosion resistance.
关键词
太阳能热发电 /
腐蚀 /
腐蚀速率 /
合金钢 /
熔盐 /
氧化层
Key words
solar thermal power generation /
corrosion /
corrosion rate /
alloy steel /
molten salt /
oxide layer
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘德有, 郛苏, 冯晓琼. 太阳能热发电系统与常规火电厂联合运行的可行性研究[C]//中国电力企业联合会: 中国国际发电技术会议. 上海, 中国, 2007.
LIU D Y,FU S,FENG X Q.Feasibility study on joint operation of solar thermal power generation system and conventional thermal power plants[C]//China Electricity Council: China International Power Generation Technology Conference. Shanghai, China, 2007.
[2] 王鹏. 太阳能光热发电熔盐储罐设计技术研究[J]. 青海电力, 2018, 37(3): 37-40.
WANG P.Study on design technology of molten salt storage tank for solar thermal power generation[J]. Qinghai electric power, 2018, 37(3): 37-40.
[3] 熊新强, 杜明俊, 张志贵, 等. 太阳能光热发电熔盐储罐选材、防腐与绝热技术研究[J]. 石油化工高等学校学报, 2017, 30(6): 59-63.
XIONG X Q, DU M J, ZHANG Z G, et al.Research on material selection, anticorrosion and thermal insulation technology of solar thermal power generation molten salt storage tank[J]. Journal of Petrochemical Universities, 2017, 30(6): 59-63.
[4] 任婷婷, 唐建群, 巩建鸣. 碳钢和低合金钢在熔盐中的腐蚀研究现状[J]. 热加工工艺, 2019, 48(18): 12-17.
REN T T, TANG J Q, GONG J M.Research status on corrosion of carbon steel and low-alloyed steel in molten salt[J]. Hot working technology, 2019, 48(18): 12-17.
[5] 郭静, 赵博, 于宇新, 等. 高温熔融盐压力容器用Q345R材料的腐蚀性能研究[J]. 中国特种设备安全, 2019, 35(2): 15-20, 24.
GUO J, ZHAO B, YU Y X, et al.Study on corrosion properties of Q345R for pressure vessels under the condition of high temperature molten salt[J]. China special equipment safety, 2019, 35(2): 15-20, 24.
[6] FERNÁNDEZ A G, LASANTA M I, PÉREZ F J. Molten salt corrosion of stainless steels and low-Cr steel in CSP plants[J]. Oxidation of metals, 2012, 78(5-6): 329-348.
[7] 张学文, 李洪川, 李生云, 等. 304、316不锈钢和Inconel 617镍基合金在硝酸熔盐中的腐蚀行为[J]. 机械工程材料, 2019, 43(5): 24-29.
ZHANG X W, LI H C, LI S Y, et al.Corrosion behavior of 304, 316 stainless steels and inconel 617 Ni-based alloy in molten nitrate salt[J]. Materials for mechanical engineering, 2019, 43(5): 24-29.
[8] RAHMAN S, PRIYADARSHAN G, RAJA K S, et al.Investigation of the secondary phases of alloy 617 by scanning kelvin probe force microscope[J]. Materials letters, 2007, 62(15): 2263-2266.
[9] 肖扬, 丁柳柳, 廖文俊, 等. 奥氏体不锈钢304、316L和321在熔融硝酸盐中的耐腐蚀性[J]. 材料导报, 2016, 30(S1): 217-219.
XIAO Y, DING L L, LIAO W J, et al.Corrosion resistances of 304, 316L and 321 austenite stainless steel in nitrate molten salt[J]. Materials review, 2016, 30(S1): 217-219.
[10] 曾潮流, 张鉴清, 吴维, 等. Ti-Al系金属间化合物的高温热腐蚀[J]. 中国腐蚀与防护学报, 1994, 14(4): 265-270.
ZENG C L, ZHANG J Q, WU W, et al.Molten sulfate induced hot corrosion of titanium aluminides[J]. Journal of Chinese Society for Corrosion and Protection, 1994, 14(4): 265-270.
[11] 王遥. 混合熔盐的物性强化及腐蚀特性实验研究[D]. 北京: 华北电力大学, 2020.
WANG Y.Experimental study on physical strengthening and corrosion characteris tics of mixed molten salt[D]. Beijing: North China Electric Power University, 2020.
[12] SOLEIMANI DORCHEH A, GALETZ M C.Slurry aluminizing: a solution for molten nitrate salt corrosion in concentrated solar power plants[J]. Solar energy materials and solar cells, 2016, 146: 8-15.
[13] 王志华, 朱明, 王明静, 等. Inconel 625合金在熔融碳酸盐中的腐蚀行为[J]. 稀有金属材料与工程, 2016, 45(3): 677-680.
WANG Z H, ZHU M, WANG M J, et al.Corrosion behavior of inconel 625 alloy in molten carbonates[J]. Rare metal materials and engineering, 2016, 45(3): 677-680.
[14] DORCHEH A S, DURHAM R N, GALETZ M C.High temperature corrosion in molten solar salt: the role of chloride impurities[J]. Materials and corrosion, 2017, 68(9): 943-951.
[15] MERWIN A, CHIDAMBARAM D.Corrosion of INCONEL alloy 625 in molten LiCl-Li2O-Li[J]. Nuclear technology, 2016, 195(2): 204-212.
[16] DAVID R L.CRC Handbook of chemistry and physics,84th edition[J]. Journal of the American Chemical Society,2003, 126(5): 1586.
基金
国家自然科学基金(52076006); 国家重点研发计划(2022YFB4202402)