考虑通信灵活性的5G基站与含光伏电源配电网多目标区间规划

曾博, 穆宏伟, 孟自帅, 张卫翔, 唐成虹

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 423-433.

PDF(3071 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3071 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 423-433. DOI: 10.19912/j.0254-0096.tynxb.2022-1945

考虑通信灵活性的5G基站与含光伏电源配电网多目标区间规划

  • 曾博1, 穆宏伟1, 孟自帅1, 张卫翔1, 唐成虹2,3
作者信息 +

MULTI-OBJECTIVE INTERVAL PLANNING FOR 5G BASE STATIONS AND DISTRIBUTION NETWORKS WITH PHOTOVOLTAIC POWER SOURCES CONSIDERING COMMUNICATION FLEXIBILITY

  • Zeng Bo1, Mu Hongwei1, Meng Zishuai1, Zhang Weixiang1, Tang Chenghong2,3
Author information +
文章历史 +

摘要

提出一种考虑通信灵活性赋能的5G基站与含光伏电源配电网多目标区间协同规划方法。首先,在深入分析5G基站与配电网交互机理的基础上,综合考虑基站能耗、通信容量及覆盖范围等方面特性约束,计及单基站级(带宽灵活分配)与基站群级(蜂窝呼吸机制)灵活性资源,构建5G基站需求响应模型。鉴于系统经济性和环境性之间的固有矛盾,分别以系统投资运行成本最低和碳排放量最小作为优化目标,建立5G基站与含光伏电源配电网协同规划的多目标区间优化模型。该模型通过对5G基站设备配置及接入节点选择、配电网扩容、RES配置及运行管理策略优化,并利用区间方法处理电力/通信负荷和RES不确定性,达到系统经济和低碳效益的同时优化。利用区间序关系和可能度法将所建模型转化为确定性优化问题,采用NSGA-Ⅱ算法进行求解。算例采用修改的IEEE-33节点系统,计算结果验证了所提方法能有效降低协同规划成本,促进可再生能源的消纳利用。

Abstract

A multi-objective interval collaborative planning method for 5G base stations and distribution networks containing photovoltaic power sources is proposed, which considers communication flexibility. Firstly, considering the characteristics constraints of base station energy consumption, communication capacity and coverage, and considering the flexibility resources of single base station level (flexible bandwidth allocation) and base station group level (cellular breathing mechanism), a 5G base station demand response model is constructed. Then, taking the minimum investment and operation cost of the system and the minimum carbon emissions as optimization objectives and using interval methods to handle the uncertainty of power/communication loads and RES, a multi-objective interval optimization model is established for the collaborative planning of 5G base stations and distribution networks containing photovoltaic power sources. Finally, the established model is transformed into a deterministic optimization problem using interval order relationship and possibility method, and solved by using the NSGA-Ⅱ algorithm. The effectiveness of the proposed method is verified by numerical examples.

关键词

光伏发电 / 蜂窝基站 / 配电网 / 电力系统规划 / 通信灵活性 / 多目标区间优化

Key words

PV power / cellular base stations / distribution networks / electric power system planning / communication flexibility / multi-objective interval optimization

引用本文

导出引用
曾博, 穆宏伟, 孟自帅, 张卫翔, 唐成虹. 考虑通信灵活性的5G基站与含光伏电源配电网多目标区间规划[J]. 太阳能学报. 2024, 45(4): 423-433 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1945
Zeng Bo, Mu Hongwei, Meng Zishuai, Zhang Weixiang, Tang Chenghong. MULTI-OBJECTIVE INTERVAL PLANNING FOR 5G BASE STATIONS AND DISTRIBUTION NETWORKS WITH PHOTOVOLTAIC POWER SOURCES CONSIDERING COMMUNICATION FLEXIBILITY[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 423-433 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1945
中图分类号: TM732   

参考文献

[1] 麻秀范, 刘子豪, 王颖, 等. 考虑通信负载迁移及储能动态备电的5G基站光伏消纳能力研究[J]. 电工技术学报, 2023, 38(21): 5832-5845, 5922.
MA X F, LIU Z H, WANG Y, et al.Research on photovoltaic absorption capacity of 5G base station considering communication load migration and energy storage dynamic backup[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5832-5845, 5922.
[2] 张宁, 杨经纬, 王毅, 等. 面向泛在电力物联网的5G通信: 技术原理与典型应用[J]. 中国电机工程学报, 2019, 39(14): 4015-4025.
ZHANG N, YANG J W, WANG Y, et al.5G communication for the ubiquitous Internet of Things in electricity: technical principles and typical applications[J]. Proceedings of the CSEE, 2019, 39(14): 4015-4025.
[3] 刘友波, 王晴, 曾琦, 等. 能源互联网背景下5G网络能耗管控关键技术及展望[J]. 电力系统自动化, 2021, 45(12): 174-183.
LIU Y B, WANG Q, ZENG Q, et al.Key technologies and prospects of energy consumption management for 5G network in background of energy internet[J]. Automation of electric power systems, 2021, 45(12): 174-183.
[4] WANG Q, ZHAO X, LV Z T, et al.Optimizing the ultra-dense 5G base stations in urban outdoor areas: coupling GIS and heuristic optimization[J]. Sustainable cities and society, 2020, 63: 102445.
[5] ALI H M, LIU J C, EJAZ W.Planning capacity for 5G and beyond wireless networks by discrete fireworks algorithm with ensemble of local search methods[J]. EURASIP journal on wireless communications and networking, 2020, 2020(1): 1-24.
[6] 雍培, 张宁, 慈松, 等. 5G通信基站参与需求响应:关键技术与前景展望[J]. 中国电机工程学报, 2021, 41(16): 5540-5552.
YONG P, ZHANG N, CI S, et al.5G communication base stations participating in demand response: key technologies and prospects[J]. Proceedings of the CSEE, 2021, 41(16): 5540-5552.
[7] 周宸宇, 冯成, 王毅. 基于移动用户接入控制的5G通信基站需求响应[J]. 中国电机工程学报, 2021, 41(16): 5452-5462.
ZHOU C Y, FENG C, WANG Y.Demand response of 5G communication base stations based on admission control of mobile users[J]. Proceedings of the CSEE, 2021, 41(16): 5452-5462.
[8] 孙名轶, 赵霞, 武桢寓, 等. 5G基站与区域综合能源系统的水-能耦合与协同[J]. 中国电机工程学报, 2023, 43(15): 5903-5916.
SUN M Y, ZHAO X, WU Z Y, et al.Water-energy nexus and coordination between 5G base stations and regional integrated energy systems[J]. Proceedings of the CSEE, 2023, 43(15): 5903-5916.
[9] 麻秀范, 孟祥玉, 朱秋萍, 等. 计及通信负载的5G基站储能调控策略[J]. 电工技术学报, 2022, 37(11): 2878-2887.
MA X F, MENG X Y, ZHU Q P, et al.Control strategy of 5G base station energy storage considering communication load[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2878-2887.
[10] 李继宇, 江修波, 李功新. 考虑用户期望及低碳效益的分布式电源优化配置[J]. 电气技术, 2019, 20(8): 11-17, 48.
LI J Y, JIANG X B, LI G X.Optimal distributed power supply configuration considering user expectations and low carbon benefits[J]. Electrical engineering, 2019, 20(8): 11-17, 48.
[11] 孔顺飞, 胡志坚, 谢仕炜, 等. 含电动汽车充电站的主动配电网二阶段鲁棒规划模型及其求解方法[J]. 电工技术学报, 2020, 35(5): 1093-1105.
KONG S F, HU Z J, XIE S W, et al.Two-stage robust planning model and its solution algorithm of active distribution network containing electric vehicle charging stations[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1093-1105.
[12] 时珉, 许可, 王珏, 等. 基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测[J]. 电工技术学报, 2021, 36(11): 2298-2305.
SHI M, XU K, WANG J, et al.Short-term photovoltaic power forecast based on grey relational analysis and GeoMAN model[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2298-2305.
[13] TAN D.Structured microgrids (SμGs) and flexible electronic large power transformers (FeLPTs)[J]. CES transactions on electrical machines and systems, 2020, 4(4): 255-263.
[14] 麻秀范, 冯晓瑜. 考虑5G网络用电需求及可靠性的变电站双Q规划法[J]. 电工技术学报, 2023, 38(11): 2962-2976.
MA X F, FENG X Y.Double Q planning method for substation considering power demand of 5G network and reliability[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 2962-2976.
[15] FISUSI A, GRACE D, MITCHELL P.Energy saving in a 5G separation architecture under different power model assumptions[J]. Computer communications, 2017, 105: 89-104.
[16] ADACHI K, JOUNG J, SUN S M, et al.Adaptive coordinated napping (CoNap) for energy saving in wireless networks[J]. IEEE transactions on wireless communications, 2013, 12(11): 5656-5667.
[17] 刘晋源, 吕林, 高红均, 等. 计及分布式电源和电动汽车特性的主动配电网规划[J]. 电力系统自动化, 2020, 44(12): 41-48.
LIU J Y, LYU L, GAO H J, et al.Planning of active distribution network considering characteristics of distributed generator and electric vehicle[J]. Automation of electric power systems, 2020, 44(12): 41-48.
[18] 陈倩, 王维庆, 王海云. 含分布式能源的配电网双层优化运行策略[J]. 太阳能学报, 2022, 43(10): 507-517.
CHEN Q, WANG W Q, WANG H Y.Bi-level optimal operation strategy of distribution network with distributed energy[J]. Acta energiae solaris sinica, 2022, 43(10): 507-517.
[19] 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测[J]. 太阳能学报, 2021, 42(5): 252-259.
ZHANG N, GE L J.Photovoltaic system short-term power interval hybrid forecasting method based on seeker optimization algorithm[J]. Acta energiae solaris sinica, 2021, 42(5): 252-259.
[20] BAI L Q, LI F X, CUI H T, et al.Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty[J]. Applied energy, 2016, 167: 270-279.
[21] 谢英柏, 周博滔. 基于NSGA-Ⅱ算法的VM循环热泵多目标优化分析[J]. 太阳能学报, 2017, 38(7): 1807-1813.
XIE Y B, ZHOU B T.Multi-objective optimization of vuilleumier cycle heat pump based on NSGA-Ⅱ algorithm[J]. Acta energiae solaris sinica, 2017, 38(7): 1807-1813.
[22] 孙亮, 杨远, 张程, 等. 分布式电源接入配电网的配电终端优化配置[J]. 太阳能学报, 2021, 42(5): 120-125.
SUN L, YANG Y, ZHANG C, et al.Distribution terminal optimal design for distributed generation accessing distribution network[J]. Acta energiae solaris sinica, 2021, 42(5): 120-125.
[23] 王振浩, 马爽, 李国庆, 等. 考虑复合储能电站接入的电网日前-日内两阶段滚动优化调度[J]. 太阳能学报, 2022, 43(10): 400-408.
WANG Z H, MA S, LI G Q, et al.Day-ahead and intra-day two-stage rolling optimal dispatch of power grid considering access of composite energy storage power stations[J]. Acta energiae solaris sinica, 2022, 43(10): 400-408.

基金

国家电网有限公司总部科技项目(5400-202040495A-0-0-00)

PDF(3071 KB)

Accesses

Citation

Detail

段落导航
相关文章

/