随着双馈风电机组(DFIG)并网容量的增加,给风电场送出线继电保护的整定带来新的挑战,保护动作性能下降甚至会出现拒动和误动的风险。为此,首先分析双馈风电机组负序电流分量特征;然后进一步分析风电场经交、直流并网时交流送出线两侧电流的特征差异,提出一种适用于双馈风电场送出线的负序电流分量纵联保护新方法。该方法利用双馈风电场送出线两侧负序电流的幅值比和相位差构成保护动作判据,同时,利用数据延时在对称故障下构造出负序分量,使其能适用于风电场送出线的各种故障类型,且具有灵敏度高、耐受过渡电阻能力强等优点。最后,在Matlab/Simulink和PSCAD/EMTDC中搭建双馈风电机组电磁暂态仿真模型,仿真分析保护方案在交直流送出线上的适应性。
Abstract
With the increase of grid-connected capacity of DFIG, it brings new challenges to the setting of relay protection for wind farm outgoing line. When the performance of the protective action is reduced, there is even a risk of rejection and misoperation. To this end, firstly, the characteristics of negative sequence current component of DFIG are analyzed. Then, the characteristic differences of the currents on both sides of the AC outgoing line when the wind farm is connected to the grid by AC or DC are further analyzed, and a new method of negative sequence current component pilot protection for the outgoing line of doubly fed wind farms is proposed. The method uses the amplitude ratio and phase difference of the negative sequence current on both sides of the double-fed wind farm outgoing line to form the protection action criterion. At the same time, uses the data delay to construct the negative sequence component under symmetrical faults, so that it can be applied to various fault types of the wind farm outgoing line, and has the advantages of high sensitivity and strong ability to withstand transition resistance. Finally, the electromagnetic transient simulation model of DFIG is built in Matlab/Simulink and PSCAD/EMTDC, to simulate and analyze the adaptability of the protection scheme on the AC/DC outgoing lines.
关键词
风力发电 /
风电场 /
线路保护 /
纵联保护 /
负序分量 /
双馈风电机组 /
撬棒保护
Key words
wind power /
wind farm /
line protection /
pilot protection /
negative sequence component /
double fed induction generator(DFIG) /
crowbar protection
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 欧阳金鑫, 熊小伏, 张涵轶. 电网短路时并网双馈风电机组的特性研究[J]. 中国电机工程学报, 2011, 31(22): 17-25.
OUYANG J X, XIONG X F, ZHANG H Y.Characteristics of DFIG-based wind generation under grid short circuit[J]. Proceedings of the CSEE, 2011, 31(22): 17-25.
[2] 肖繁, 张哲, 尹项根, 等. 含双馈风电机组的电力系统故障计算方法研究[J]. 电工技术学报, 2016, 31(1): 14-23.
XIAO F, ZHANG Z, YIN X G, et al.The fault calculation method of power systems including doubly-fed induction generators[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 14-23.
[3] 马越, 陈星莺, 余昆, 等. 不同类型短路故障下双馈风机短路电流分析[J]. 电力系统及其自动化学报, 2014, 26(2): 60-65.
MA Y, CHEN X Y, YU K, et al.Analysis for short circuit current of DFIG-based wind generation system under different types of short circuit[J]. Proceedings of the CSU-EPSA, 2014, 26(2): 60-65.
[4] 牛乐乐. 大规模风电经柔直并网的送端交流故障穿越技术[D]. 北京: 华北电力大学, 2019.
NIU L L.AC fault ride-through strategy for large-scale wind power based on flexible DC transmission[D]. Beijing: North China Electric Power University, 2019.
[5] 李菁. 风电场短路电流计算模型及其谐波特性对继电保护的影响研究[D]. 北京: 华北电力大学, 2019.
LI J.Research on short circuit current calculation model of wind farm and influence of the harmonic characterstics on relay protection[D]. Beijing: North China Electric Power University, 2019.
[6] VRIONIS T D, KOUTIVA X I, VOVOS N A.A genetic algorithm-based low voltage ride-through control strategy for grid connected doubly fed induction wind generators[J]. IEEE transactions on power systems, 2014, 29(3): 1325-1334.
[7] 邓三星, 张雪敏, 刘辉, 等. 双馈风力发电机低电压穿越控制策略量化评价[J]. 电力系统自动化, 2018, 42(21): 28-35.
DENG S X, ZHANG X M, LIU H, et al.Quantitative evaluation of low voltage ride-through control strategies for doubly-fed induction generators[J]. Automation of electric power systems, 2018, 42(21): 28-35.
[8] 荣梦飞, 吴红斌, 吴通华, 等. 提高直驱风电经柔直并网系统稳定性的改进V/F控制策略[J]. 电网技术, 2021, 45(5): 1698-1706.
RONG M F, WU H B, WU T H, et al.Improved V/F control strategy for enhancing stability of direct-drive wind power with VSC-HVDC system[J]. Power system technology, 2021, 45(5): 1698-1706.
[9] 徐瑞林, 李明睿, 张潋镪, 等. 渝鄂背靠背柔直系统交流故障穿越策略研究[J]. 电工电能新技术, 2020, 39(6): 42-50.
XU R L, LI M R, ZHANG L Q, et al.Research of AC fault ride-through strategy for Chongqing-Hubei VSC-HVDC back-to-back project[J]. Advanced technology of electrical engineering and energy, 2020, 39(6): 42-50.
[10] 黄涛, 陆于平, 蔡超. DFIG等效序突变量阻抗相角特征对故障分量方向元件的影响分析[J]. 中国电机工程学报, 2016, 36(14): 3929-3940.
HUANG T, LU Y P, CAI C.Analysis of phase angle characteristics of DFIG equivalent sequence superimposed impedances and its impact on fault components based direction relay[J]. Proceedings of the CSEE, 2016, 36(14): 3929-3940.
[11] 杨启帆, 刘益青, 朱一鸣, 等. 适用于DFIG并网线路的改进负序方向元件[J]. 电力系统自动化, 2019, 43(10): 118-126, 149.
YANG Q F, LIU Y Q, ZHU Y M, et al.Improved negative sequence directional element for transmission line connecting DFIG[J]. Automation of electric power systems, 2019, 43(10): 118-126, 149.
[12] 秦继朔, 贾科, 杨彬, 等. 风电多端柔性直流并网系统交流送出线故障短路电流解析[J]. 电力系统自动化, 2021, 45(14): 47-55.
QIN J S, JIA K, YANG B, et al.Short-circuit fault current analysis of AC transmission line of MMC-MTDC system for wind power integration[J]. Automation of electric power systems, 2021, 45(14): 47-55.
[13] 陈蕊. 新能源柔直送出系统故障特征及保护配置方案研究[D]. 北京: 华北电力大学, 2019.
CHEN R.Study on fault characteristics and protection configuration scheme of MMC-HVDC connected renewable power system[D]. Beijing: North China Electric Power University, 2019.
[14] 郑黎明, 贾科, 毕天姝, 等. 海上风电接入柔直系统交流侧故障特征及对保护的影响分析[J]. 电力系统保护与控制, 2021, 49(20): 20-32.
ZHENG L M, JIA K, BI T S, et al.AC-side fault analysis of a VSC-HVDC transmission system connected to offshore wind farms and the impact on protection[J]. Power system protection and control, 2021, 49(20): 20-32.
[15] 郑黎明, 贾科, 侯来运, 等. 基于奇异值分解的海上风电接入柔直系统的交流线路保护[J]. 中国电机工程学报, 2020, 40(S1): 75-83.
ZHENG L M, JIA K, HOU L Y, et al.Singular value decomposition based protection for AC transmission lines of VSC-HVDC system with offshore wind farms[J]. Proceedings of the CSEE, 2020, 40(S1): 75-83.
[16] 李彦宾, 贾科, 毕天姝, 等. 逆变型电源对故障分量方向元件的影响机理研究[J]. 电网技术, 2017, 41(10): 3230-3236.
LI Y B, JIA K, BI T S, et al.Influence mechanism of inverter-interfaced renewable energy generators on fault component based directional relay[J]. Power system technology, 2017, 41(10): 3230-3236.
[17] 葛耀中. 新型继电保护和故障测距的原理与技术[M]. 2版. 西安: 西安交通大学出版社, 2007.
GE Y Z.Principle and technology of new relay protection and fault location[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2007.
[18] 欧阳金鑫. 变速恒频风电机组并网故障机理与分析模型研究[D]. 重庆: 重庆大学, 2012.
OUYANG J X.Studies on fault characterstics and analytical models of integrated variable-speed constant-frequency wind power generator[D]. Chongqing: Chongqing University, 2012.
[19] 王燕萍. 双馈风电机组暂态特性及对配网保护的影响研究[D]. 北京: 华北电力大学, 2016.
WANG Y P.Research on transient characteristics of wind power generation with doubly fed induction generator and the influence on protection of distribution network[D]. Beijing: North China Electric Power University, 2016.
[20] 杨兴雄, 束洪春, 单节杉, 等. 计及阻容式撬棒动作时间的双馈风机短路电流分析[J]. 电工技术学报, 2021, 36(22): 4716-4725.
YANG X X, SHU H C, SHAN J S, et al.Short circuit current analysis of DFIG considering resistance-capacitance type crowbar protection action time[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4716-4725.
基金
国家自然科学基金(52037003); 云南省重大专项(202002AF08001)