中国典型复杂地形风能资源特性及其形成机制

朱蓉, 向洋, 孙朝阳, 常蕊

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 226-237.

PDF(3934 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3934 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 226-237. DOI: 10.19912/j.0254-0096.tynxb.2022-1952

中国典型复杂地形风能资源特性及其形成机制

  • 朱蓉, 向洋, 孙朝阳, 常蕊
作者信息 +

CHARACTERISTICS AND FORMATION MECHANISM OF WIND ENERGY RESOURCES IN TYPICAL COMPLEX TERRAIN IN CHINA

  • Zhu Rong, Xiang Yang, Sun Chaoyang, Chang Rui
Author information +
文章历史 +

摘要

为提高对复杂地形风资源特性及其形成机制的认识,改进复杂地形风场数值模拟方法,分别选取代表极大起伏山地与宽谷地形的藏南谷地、代表极大起伏山地与深谷地形的横断山区以及代表中、小起伏丘陵山地的山西高原开展风资源特性观测实验,分析不同典型复杂地形条件下天气背景风场、局地大气环流、地形动力强迫、地表摩擦与热力作用对风资源特性形成的贡献,结果表明:山西高原局地大气环流的作用较小;藏南谷地和横断山区的山谷风环流对其风能资源特性的形成起主要作用,尤其是横断山区还存在多尺度的局地大气环流,传统的风电场风资源CFD数值模拟不足以描述如此复杂的风场。因此,在局地大气环流作用明显的复杂地形地区,需要采用中尺度与CFD结合的风电场选址风资源数值模拟方法。

Abstract

Whether at home or abroad, there is a problem that the actual power generation of wind farms located in complex terrain is lower than that calculated by CFD software. Therefore, it is necessary to improve the understanding of the characteristics and formation mechanism of wind resources in complex terrain and improve the numerical simulation method of wind resource for wind farm siting. For this purpose, wind resource characteristics observation experiments are carried out in southern Tibet, Hengduan Mountains and Shanxi Plateau, which represent the extremely undulating mountains and wide valleys, the extremely undulating mountains and deep valleys, as well as the medium and small undulating hills and mountains. Through analyzing the contribution of the atmospheric background wind field, local atmospheric circulation, terrain dynamic forcing, surface friction and thermal action to the formation of wind resource characteristics under different typical complex terrain conditions, the results are as follows: the role of local atmospheric circulation in Shanxi Plateau is relatively small, the valley wind circulation in the southern Tibetan valley and Hengduan mountain area plays a major role in the formation of their wind energy resource characteristics, especially in Hengduan mountain area, where there are multi-scale local circulations. The traditional CFD numerical simulation of wind resources for wind farms siting is not enough to describe such a complex wind field. Therefore, the numerical simulation method combining mesoscale and CFD is very necessary in the wind resource assessment for wind farm siting in complex terrain.

关键词

风电场 / 复杂地形 / 激光雷达 / 声雷达 / 数值模拟 / 山谷风环流

Key words

wind farm / complex terrain / lidar / sodar / numerical simulation / valley breeze circulation

引用本文

导出引用
朱蓉, 向洋, 孙朝阳, 常蕊. 中国典型复杂地形风能资源特性及其形成机制[J]. 太阳能学报. 2024, 45(4): 226-237 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1952
Zhu Rong, Xiang Yang, Sun Chaoyang, Chang Rui. CHARACTERISTICS AND FORMATION MECHANISM OF WIND ENERGY RESOURCES IN TYPICAL COMPLEX TERRAIN IN CHINA[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 226-237 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1952
中图分类号: P425.6   

参考文献

[1] 李小兵, 王潇. 我国风能资源评估的主要问题及原因分析[J]. 风能, 2019(1): 53-60.
LI X B, WANG X.Main problems and causes analysis of wind energy resources evaluation in China[J]. Wind energy, 2019(1): 53-60.
[2] HAUPT S E, ANDERSON A, BERG L, et al.Third-Year report of the atmosphere to electrons mesoscale-to- microscale coupling project[R]. Pacific Northwest National Laboratory PNNL-28259, 2017: 134.
[3] SANDERSE B, PIJL VAN DER S P, KOREN B. Review of computational fluid dynamics for wind turbine wake aerodynamics[J]. Wind energy, 2011, 14: 799-819.
[4] TROLDBORG N, LARSEN G C, MADSEN H.A, et al. Numerical simulations of wake interaction between two wind turbines at various inflow conditions[J]. Wind energy, 2011, 14: 859-876
[5] MEHTA D, VAN ZUIJLEN A H, KOREN B, et al. Large-eddy simulation of wind farm aerodynamics: a review[J]. Journal of wind engineering and industrial aerodynamics, 2014, 133: 1-17.
[6] 吴国娟, 曹胜平, 高韬深, 等. 复杂地形条件下不同测风塔代表性对评估结果的影响[J]. 风能, 2021(6): 56-59.
WU G J, CAO S P, GAO T S, et al.Influence of representativeness of different anemometers on evaluation results under complex terrain conditions[J]. Wind energy, 2021(6): 56-59.
[7] TANG XY, Zhao S, FAN B, et al.Micro-scale wind resource assessment in complex terrain based on CFD coupled measurement from multiple masts[J]. Applied energy, 2019, 238: 806-815.
[8] CLARENCE T, GIRARD N, DELAUNAY D, et al.Wind farm production assessment in complex terrain new validation Meteodyn WT[R]. European wind energy conference & exhibition, Milan, Italy, 2007.
[9] CATTIN R, SCHAFFNER B, KUNZ S. Validation of CFD wind resource modeling in highly complex terrain[R]. European wind energy conference & exhibition2012,Copenhagen,Denmark,2012. ISBN: 978-1-62748-291-2
[10] 朱蓉, 徐红,龚强, 等.中国风能开发利用的风环境区划[J].太阳能学报,2022, 44(3): 55-66.
ZHU R, XU H, GONG Q, et al.Wind environmental regionalization for development and utilization of wind energy in China[J]. Acta energiae solaris sinica, 2022, 44(3): 55-66.
[11] DURÁN P, MEIΒNER C, CASSO P. A new meso-microscale coupled modelling framework for wind resource assessment: a validation study[J]. Renewable energy, 2020, 160: 538-554.
[12] TEMEL O, PORCHETTA S, BRICTEUX L, et al.RANS closures for non-neutral microscale CFD simulations sustained with inflow conditions acquired from mesoscale simulations[J]. Applied mathematical modelling, 2018, 53: 635-652.
[13] MUÑOZ-ESPARZA D, KOSOVIĆ B, MIROCHA J, et al. Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models[J]. Boundary-layer meteorology, 2014, 153: 409-440.
[14] 马文通, 朱蓉, 李泽椿, 等. 基于CFD动力降尺度的复杂地形风电场风电功率短期预测方法研究[J]. 气象学报, 2016, 74(1): 89-102.
MA W T, ZHU R, LI Z C, et al.Study of the short-term wind power forecasting method for complex terrain wind farm based on the CFD dynamical downscaling[J]. Acta meteorologica sinica, 2016, 74(1): 89-102.
[15] 方艳莹, 徐海明, 朱蓉,等. 基于WRF和CFD软件结合的风能资源数值模拟试验研究[J]. 气象, 2012, 38(11): 1378-1389.
FAN Y Y, XU H M, ZHU R, et al.Study on numerical simulation of wind energy resources based on WRF and CFD models[J]. Meteorological monthly, 2012, 38(11): 1378-1389.
[16] AQ System Stockholm AB, Model AQ510-portable sodar systems[EB/OL]. https://www.environmental-expert.com/products/model-aq510-portable-sodar-systems-387171.
[17] TANG S M, LI T T, GUO Y, et al.Correction of various environmental influences on Doppler wind lidar based on multiple linear regression model[J]. Renewable energy, 2022, 184: 933-947.
[18] 曾佩生, 朱蓉, 范广洲, 等. 京津冀地区低层局地大气环流的气候特征研究[J]. 气象, 2019, 45(3): 381-394.
ZENG P S, ZHU R, FAN G Z, et al.Study on climatic characteristics of local circulation in the lower atmosphere in Beijing-Tianjin-Hebei region[J]. Meteorological monthly, 2019, 45(3): 381-394.
[19] KAIMAL J C, FINNIGAN J J.Atmospheric boundary layer flows[M]. New York: Oxford University Press,1994.
[20] GRYNING S E, BATCHVAROVA E, BRUMMER B, et al.On the extension of the wind profile over homogeneous terrain beyond the surface layer[J]. Boundary-layer meteorology, 2007, 124: 251-268.
[21] HE X, ZHOU S Q.An assessment of glacier inventories for the Third Pole Region[J]. Frontiers in earth science, 2022, 10: 848007. doi:10.3389/deart.2022.848007.

基金

国家重点研发计划“可再生能源与氢能技术”专项“风力发电复杂风资源特性研究及其应用与验证”项目(2018YFB1501101)

PDF(3934 KB)

Accesses

Citation

Detail

段落导航
相关文章

/