复杂工况下储能飞轮转子传力支承与减振设计

林大方, 王四季, 王程阳, 刘源, 陈佳窈

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 356-364.

PDF(1965 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1965 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 356-364. DOI: 10.19912/j.0254-0096.tynxb.2022-1957

复杂工况下储能飞轮转子传力支承与减振设计

  • 林大方, 王四季, 王程阳, 刘源, 陈佳窈
作者信息 +

DESIGN OF ENERGY STORAGE FLYWHEEL ROTOR SUPPORTING STRUCTURE AND VIBRATION DAMPING UNDER COMPLEX OPERATING CONDITIONS

  • Lin Dafang, Wang Siji, Wang Chengyang, Liu Yuan, Chen Jiayao
Author information +
文章历史 +

摘要

针对复杂工况下飞轮转子上、下传力支承角接触球轴承与支座间隙配合导致的振动问题,以及真空环境下振动控制问题,提出飞轮转子上支承采用圆柱滚子轴承,下支承采用深沟球轴承+成对角接触球轴承联合传力支承方案,解决了复杂工况下轴向力调整、磁轴承失效、轴向力平衡、支承刚度连续、支承系统变形协调等结构设计难题。同时引入一种主控式弹支干摩擦阻尼器(ESDFD),抑制转子径向振动。采用有限元法建立ESDFD-储能飞轮转子系统耦合动力学模型,计算飞轮转子动力学特性,分析单/双阻尼器对转子振动的控制效果。结果表明:针对转子一阶、二阶模态振动,采用单/双阻尼器控制方式,最大响应均低于30 μm,减振比超过90%。

Abstract

Aiming at the vibration problems caused by the clearance fit between the angular contact bearings and the bearing chocks of the flywheel rotor's upper and lower supports under complex conditions, and the vibration control problem in the vacuum environment, a combined force transmission support scheme of the cylindrical roller bearing for upper support, and both deep groove ball bearing and diagonal contact ball bearing for lower support of flywheel rotor is proposed, which solves the structural design problems such as axial force regulation, magnetic bearing failure, nonlinear supporting stiffness and deformation compatibility of support under complex conditions. In addition, an elastic support/dry friction damper (ESDFD) is used to reduce the radial vibration of the rotor. The coupling dynamic model of the flywheel rotor with ESDFDs is established by using the finite element method. Base on that, the dynamic characteristics of flywheel rotor is calculated, and the control effect of single/double damper on rotor vibration is analyzed. The results show that under the control of a single/double damper, the maximum vibration response of the first and second order mode is lower than 30 μm and the vibration reduction ratio exceeds 90%.

关键词

飞轮储能 / 结构设计 / 振动控制 / 主控式弹支干摩擦阻尼器

Key words

flywheel energy storage / structural design / vibration control / elastic support/dry friction damper

引用本文

导出引用
林大方, 王四季, 王程阳, 刘源, 陈佳窈. 复杂工况下储能飞轮转子传力支承与减振设计[J]. 太阳能学报. 2024, 45(4): 356-364 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1957
Lin Dafang, Wang Siji, Wang Chengyang, Liu Yuan, Chen Jiayao. DESIGN OF ENERGY STORAGE FLYWHEEL ROTOR SUPPORTING STRUCTURE AND VIBRATION DAMPING UNDER COMPLEX OPERATING CONDITIONS[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 356-364 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1957
中图分类号: TK02    TH133.7   

参考文献

[1] 武鑫, 陈玉龙, 柳亦兵. 并网型飞轮储能系统金属转子结构优化设计[J]. 太阳能学报, 2021, 42(2): 317-321.
WU X, CHEN Y L, LIU Y B.Structure optimization of metal rotor of grid-connected flywheel energy storage system[J]. Acta energiae solaris sinica, 2021, 42(2): 317-321.
[2] 于苏杭, 郭文勇, 滕玉平, 等. 飞轮储能轴承结构和控制策略研究综述[J]. 储能科学与技术, 2021, 10(5): 1631-1642.
YU S H, GUO W Y, TENG Y P, et al.A review of the structures and control strategies for flywheel bearings[J]. Energy storage science and technology, 2021, 10(5): 1631-1642.
[3] JIANG S Y, WANG H C, WEN S B.Flywheel energy storage system with a permanent magnet bearing and a pair of hybrid ceramic ball bearings[J]. Journal of mechanical science and technology, 2014, 28(12): 5043-5053.
[4] ZHANG C, TSENG K J.Design and control of a novel flywheel energy storage system assisted by hybrid mechanical-magnetic bearings[J]. Mechatronics, 2013, 23(3): 297-309.
[5] MILLER S, KIRCHMAN P, SUDEY J. Reaction wheel operational impacts on the GOES-N jitter environment[C]//Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit. Hilton Head, South Carolina, 2007: AIAA2007-6736.
[6] 王洪昌. 储能飞轮转子动力学特性分析与试验研究[D]. 南京: 东南大学, 2012.
WANG H C.Analysis and experimental study on dynamic characteristics of energy storage flywheel rotor[D]. Nanjing: Southeast University, 2012.
[7] ZHANG D Z, WU D Y, HAN Q K, et al.Nonlinear dynamic force transmissibility of a flywheel rotor supported by angular contact ball bearings[J]. Nonlinear dynamics, 2021, 103(3): 2273-2286.
[8] TANG C L, DAI X J, ZHANG X Z, et al.Rotor dynamics analysis and experiment study of the flywheel spin test system[J]. Journal of mechanical science and technology, 2012, 26(9): 2669-2677.
[9] WANG H C, DU Z M.Dynamic analysis for the energy storage flywheel system[J]. Journal of mechanical science and technology, 2016, 30(11): 4825-4831.
[10] 戴兴建, 卫海岗, 沈祖培. 挤压油膜阻尼在储能飞轮转子支承系统中应用研究[J]. 应用力学学报, 2005, 22(1): 40-43, 158.
DAI X J, WEI H G, SHEN Z P.Application of squeeze film dampers in rotor-bearing system of energy storage flywheel[J]. Chinese journal of applied mechanics, 2005, 22(1): 40-43, 158.
[11] LI X H, ZHU Z W.Nonlinear dynamic characteristics and stability analysis of energy storage flywheel rotor with shape memory alloy damper[J]. Journal of energy storage, 2022, 45: 103392.
[12] 张剀, 徐旸, 董金平, 等. 储能飞轮中的主动磁轴承技术[J]. 储能科学与技术, 2018, 7(5): 783-793.
ZHANG K, XU Y, DONG J P, et al.Application of active magnetic bearings in flywheel systems[J]. Energy storage science and technology, 2018, 7(5): 783-793.
[13] TANG J Q, FANG J C, WEN W.Superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel for spacecraft[J]. IEEE transactions on applied superconductivity, 2012, 22(6): 5702109.
[14] HAN Y H, PARK B J, JUNG S Y, et al.Study of superconductor bearings for a 35 kWh superconductor flywheel energy storage system[J]. Physica C: superconductivity, 2012, 483: 156-161.
[15] 范天宇, 廖明夫. 转子干摩擦阻尼器及其减振机理[J]. 机械科学与技术, 2003, 22(5): 743-745, 760.
FAN T Y, LIAO M F.Dynamic behavior of a rotor with dry friction dampers[J]. Mechanical science and technology, 2003, 22(5): 743-745, 760.
[16] 王四季, 廖明夫, 杨伸记. 主动式弹支干摩擦阻尼器控制转子振动的实验[J]. 航空动力学报, 2007, 22(11): 1893-1897.
WANG S J, LIAO M F, YANG S J.Experimental investigation on rotor vibration control by elastic support/dry friction damper[J]. Journal of aerospace power, 2007, 22(11): 1893-1897.
[17] 宋明波, 谭大力, 廖明夫. 压电陶瓷弹性支承干摩擦阻尼器减振实验[J]. 航空动力学报, 2013, 28(10): 2223-2227.
SONG M B, TAN D L, LIAO M F.Experiment on vibration reduction by elastic support/dry friction damper with piezoelectric ceramic[J]. Journal of aerospace power, 2013, 28(10): 2223-2227.
[18] 宋明波. 弹支干摩擦阻尼器与转子匹配的动力学设计方法研究[D]. 西安: 西北工业大学, 2016.
SONG M B.Dynamic design of elastic support/dry friction damper matching rotor[D]. Xi'an: Northwestern Polytechnical University, 2016.
[19] 廖明夫. 航空发动机转子动力学[M]. 西安: 西北工业大学出版社, 2015.
LIAO M F.Rotor dynamics of aero-engine[M]. Xi'an: Northwestern Polytechnical University Press, 2015.
[20] GB/T9239.1—2006,机械振动: 横态(刚性)转子平衡品质要求: 第1部分: 规范与平衡允差检验[S].
GB/T9239.1—2006, Mechanical vibration: balance quality requirements for rotors in a constant(rigid) state: part 1: specification and verification of balance tolerances[S].
[21] 廖明夫, 丛佩红, 王娟, 等. 航空发动机转子振动的“热模态”和减振设计[J]. 航空动力学报, 2015, 30(5): 1125-1140.
LIAO M F, CONG P H, WANG J, et al.“Hot modes” of rotor vibrations and vibration reduction design for aero-engines[J]. Journal of aerospace power, 2015, 30(5): 1125-1140.

基金

国家科技重大专项(J2019-IV-0005-0072)

PDF(1965 KB)

Accesses

Citation

Detail

段落导航
相关文章

/