基于萤火虫优化模糊P&O的微生物燃料电池最大功率点跟踪

樊立萍, 陈其鹏

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 373-381.

PDF(1961 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1961 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 373-381. DOI: 10.19912/j.0254-0096.tynxb.2022-1959

基于萤火虫优化模糊P&O的微生物燃料电池最大功率点跟踪

  • 樊立萍1,2, 陈其鹏1,2
作者信息 +

MAXIMUM POWER POINT TRACKING OF MICROBIAL FUEL CELL BASED ON FIREFLY OPTIMIZATION FUZZY P&O

  • Fan Liping1,2, Chen Qipeng1,2
Author information +
文章历史 +

摘要

针对微生物燃料电池产电量低、输出不稳定等问题,提出一种混合萤火虫优化和模糊改进扰动观测的最大功率点跟踪算法,利用双种群萤火虫算法的全局优化能力和模糊控制的逻辑推理能力产生更精确的控制信号,通过Boost变换器对等效负载进行动态调节。结果表明:基于双种群萤火虫优化-模糊扰动观测的最大功率点跟踪算法能以更快的速度追踪到并稳定在最大功率点,降低了稳态误差,抑制了功率振荡,提高了抗干扰能力,显著改善了微生物燃料电池的产电能力和供电质量。

Abstract

Aiming at the problems of low power and unstable output of microbial fuel cells, a maximum power point tracking control algorithm with a mixture of firefly optimization and fuzzy modified perturb & observe(P&O) is proposed. Using the global optimization ability of dual-species firefly optimization algorithm and the logic reasoning ability of fuzzy control, more accurate control signals are generated, and the equivalent load is dynamically adjusted through a Boost converter. The results show that the maximum power point tracking algorithm based on dual species firefly optimization mixed with fuzzy modified perturb & observe can track and stabilize at the maximum power point at a faster speed, reduce the steady-state error, suppress power oscillation, enhance the anti-interference ability, and significantly improve the power generation capacity and power supply quality of microbial fuel cells.

关键词

微生物燃料电池 / 最大功率跟踪 / 模糊控制 / 萤火虫算法

Key words

microbial fuel cell / maximum power point tracking / fuzzy control / firefly algorithm

引用本文

导出引用
樊立萍, 陈其鹏. 基于萤火虫优化模糊P&O的微生物燃料电池最大功率点跟踪[J]. 太阳能学报. 2024, 45(4): 373-381 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1959
Fan Liping, Chen Qipeng. MAXIMUM POWER POINT TRACKING OF MICROBIAL FUEL CELL BASED ON FIREFLY OPTIMIZATION FUZZY P&O[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 373-381 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1959
中图分类号: TM911.45   

参考文献

[1] ABDALLAH M, FEROZ S, ALANI S, et al.Continuous and scalable applications of microbial fuel cells: a critical review[J]. Reviews in environmental science and bio/technology, 2019, 18(3): 543-578.
[2] VERMA J, KUMAR D, SINGH N, et al.Electricigens and microbial fuel cells for bioremediation and bioenergy production: a review[J]. Environmental chemistry letters, 2021, 19(3): 2091-2126.
[3] WU Q, JIAO S P, MA M X, et al.Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation[J]. Environmental science and pollution research, 2020, 27(7): 6749-6764.
[4] 樊立萍, 童兵. 基于BOOST变换器的MFC最大功率跟踪控制[J]. 太阳能学报, 2021, 42(2): 274-280.
FAN L P, TONG B.Maximum power tracking control of microbial fuel cell based on BOOST convertor[J]. Acta energiae solaris sinica, 2021, 42(2): 274-280.
[5] FAN L P, FENG X.Q-learning based maximum power point tracking control for microbial fuel cell[J]. International journal of electrochemical science, 2020, 15(10): 9917-9932.
[6] MOUSA H, YOUSSEF A R, MOHAMED E.Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area[J]. Renewable energy, 2020, 154: 875-893.
[7] HARRAG A, REZK H.Indirect P&O type-2 fuzzy-based adaptive step MPPT for proton exchange membrane fuel cell[J]. Neural computing and applications, 2021, 33(15): 9649-9662.
[8] TILAHUN S L, NGNOTCHOUYE J M T, HAMADNEH N N. Continuous versions of firefly algorithm: a review[J]. Artificial intelligence review, 2019, 51(3): 445-492.
[9] KUMAR V, KUMAR D.A systematic review on firefly algorithm: past, present, and future[J]. Archives of computational methods in engineering, 2021, 28(4): 3269-3291.
[10] 林涛, 赵丹阳, 严寒. 风电消纳下多型号制氢机组阵列优化调度研究[J]. 太阳能学报, 2022, 43(11): 466-473.
LIN T, ZHAO D Y, YAN H.Research on optimal scheduling of multi-model hydrogen generator array under wind power consumption[J]. Acta energiae solaris sinica, 2022, 43(11): 466-473.
[11] THEPPHAKORN T, PONGCHAROEN P.Modified and hybridised bi-objective firefly algorithms for university course scheduling[J]. Soft computing, 2023, 27(14): 9735-9772.
[12] 武新雯, 李虹, 刘立群, 等. 萤火虫算法的改进及其在光伏MPPT中的应用[J]. 太原科技大学学报, 2019, 40(3): 201-207.
WU X W, LI H, LIU L Q, et al.Improvement of firefly algorithm and its application in photovoltaic MPPT[J]. Journal of Taiyuan University of Science and Technology, 2019, 40(3): 201-207.
[13] ZENG Y Z, CHOO Y F, KIM B H, et al.Modelling and simulation of two-chamber microbial fuel cell[J]. Journal of power sources, 2010, 195(1): 79-89.
[14] FAN L P, ZHANG J, SHI X L.Performance improvement of a microbial fuel cell based on model predictive control[J]. International journal of electrochemical science, 2015, 10(1): 737-748.
[15] 樊立萍, 王会龙, 李崇. 微生物燃料电池的变论域自适应模糊控制研究[J]. 电源技术, 2016, 40(2): 313-315.
FAN L P, WANG H L, LI C.Adaptive fuzzy control based on variable universe for microbial fuel cell[J]. Chinese journal of power sources, 2016, 40(2): 313-315.
[16] FAN L, LI J J.Overviews on internal resistance and its detection of microbial fuel cells[J]. International journal of circuits, systems and signal processing, 2016, 10: 316-320.
[17] GUL H, RAZA W, LEE J, et al.Progress in microbial fuel cell technology for wastewater treatment and energy harvesting[J]. Chemosphere, 2021, 281: 130828.
[18] FAN L P, CHEN Q P, GUO Z Q.An fuzzy improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for microbial fuel cells[J]. International journal of electrochemical science, 2022, 17(11): 221157.
[19] XU G H, ZHANG T W, LAI Q.A new firefly algorithm with mean condition partial attraction[J]. Applied intelligence, 2022, 52(4): 4418-4431.
[20] REZAEI K, REZAEI H.An improved firefly algorithm for numerical optimization problems and it's application in constrained optimization[J]. Engineering with computers, 2022, 38(4): 3793-3813.
[21] 张鹏, 罗正华, 唐成达, 等. 一种基于改进萤火虫算法的光伏MPPT控制方法[J]. 哈尔滨理工大学学报, 2020, 25(3): 53-60.
ZHANG P, LUO Z H, TANG C D, et al.Photovoltaic MPPT control method based on improved firefly algorithm[J]. Journal of Harbin University of Science and Technology, 2020, 25(3): 53-60.
[22] CAO L L, BEN K R, PENG H, et al.Enhancing firefly algorithm with adaptive multi-group mechanism[J]. Applied intelligence, 2022, 52(9): 9795-9815.
[23] YU S H, ZUO X K, FAN X L, et al.An improved firefly algorithm based on personalized step strategy[J]. Computing, 2021, 103(4): 735-748.
[24] DIXIT A, MANI A, BANSAL R.An adaptive mutation strategy for differential evolution algorithm based on particle swarm optimization[J]. Evolutionary intelligence, 2022, 15(3): 1571-1585.

基金

国家自然科学基金(61143007); 辽宁省教育厅重点攻关项目(LJKZZ20220057); 中国-北马其顿政府间科技合作项目(国科外[2019]22: 6-8)

PDF(1961 KB)

Accesses

Citation

Detail

段落导航
相关文章

/