为提高超短期风速预测的精度,提出一种融合变分模态分解(VMD)、相空间重构、改进的北方苍鹰优化算法(INGO)和共享权重门控记忆网络(SWGMN)的超短期风速混合预测模型。首先,考虑到风速的强波动性会对预测带来不利影响,采用VMD对风速时间序列进行分解,得到一系列相对平稳的子序列。然后对各子序列分量进行相空间重构,得到相应的相空间矩阵。接着针对长短期记忆网络(LSTM)训练时间较长和权重参数较多的问题,提出一种SWGMN对各子序列分量建立预测模型。同时,为提高模型预测性能,提出一种INGO对SWGMN模型的两个超参数进行寻优,得到最优参数组合。最后累加各子序列预测值,得到最终风速预测结果。实验结果表明,在单步预测和多步预测中,所提方法的平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数R2分别为0.1828 m/s、0.2263 m/s、4.5481%、0.987和0.2429 m/s、0.3107 m/s、6.1113%、0.976,相较于传统方法具有更高的预测精度和预测效率。
Abstract
In order to improve the accuracy of ultra-short-term wind speed forecasting, a hybrid ultra-short-term wind speed prediction model that incorporates variational modal decomposition (VMD), phase space reconstruction, improved northern goshawk optimization algorithm (INGO) and shared weight gated memory network (SWGMN) is proposed. First, considering that the strong volatility of wind speed can adversely affect the prediction, the wind speed time series are decomposed by VMD to obtain a series of relatively smooth subseries. Then the phase space reconstruction is performed for each subsequence component to obtain the corresponding phase space matrix. Subsequently, a shared weight gated memory network (SWGMN) is proposed for the problems of long training time and many weight parameters of long short-term memory network (LSTM), and the SWGMN is used to build a prediction model for each subseries component. Meanwhile, to improve the prediction performance of the model, an improved northern goshawk optimization algorithm (INGO) is proposed to find the optimal combination of the two hyperparameters of the SWGMN model. Finally, the predicted values of each subseries are superimposed to obtain the final wind speed prediction results. The experimental results show that the proposed method has higher prediction accuracy and efficiency compared with the traditional methods.
关键词
风速 /
预测 /
深度学习 /
变分模态分解 /
共享权重门控记忆网络 /
改进的北方苍鹰优化算法
Key words
wind speed /
forecasting /
deep learning /
variational mode decomposition /
shared weight gated memory network /
improved northern goshawk optimization algorithm
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张家安, 刘东, 刘辉, 等. 基于风速波动特征提取的超短期风速预测[J]. 太阳能学报, 2022, 43(9): 308-313.
ZHANG J A, LIU D, LIU H, et al.Ultra short term wind speed prediction based on wind speed fluctuation feature extraction[J]. Acta energiae solaris sinica, 2022, 43(9): 308-313.
[2] 赵泽妮, 云斯宁, 贾凌云, 等. 基于统计模型的短期风能预测方法研究进展[J]. 太阳能学报, 2022, 43(11): 224-234.
ZHAO Z N, YUN S N, JIA L Y, et al.Recent progress in short-term forecasting of wind energy based on statistical models[J]. Acta energiae solaris sinica, 2022, 43(11): 224-234.
[3] LIU H, CHEN C.Data processing strategies in wind energy forecasting models and applications: a comprehensive review[J]. Applied energy, 2019, 249: 392-408.
[4] 曾亮, 雷舒敏, 王珊珊, 等. 基于OVMD-SSA-DELM-GM模型的超短期风电功率预测方法[J]. 电网技术, 2021, 45(12): 4701-4712.
ZENG L, LEI S M, WANG S S, et al.Ultra-short-term wind power prediction based on OVMD-SSA-DELM-GM model[J]. Power system technology, 2021, 45(12): 4701-4712.
[5] 向玲, 邓泽奇. 基于改进经验小波变换和最小二乘支持向量机的短期风速预测[J]. 太阳能学报, 2021, 42(2): 97-103.
XIANG L, DENG Z Q.Short-term wind speed forecasting based on improved empirical wavelet transform and least squares support vector machines[J]. Acta energiae solaris sinica, 2021, 42(2): 97-103.
[6] 王俊, 李霞, 周昔东, 等. 基于VMD和LSTM的超短期风速预测[J]. 电力系统保护与控制, 2020, 48(11): 45-52.
WANG J, LI X, ZHOU X D, et al.Ultra-short-term wind speed prediction based on VMD-LSTM[J]. Power system protection and control, 2020, 48(11): 45-52.
[7] 张冬雪. 基于LSTM和ARIMA的风速时间序列预测研究[D]. 兰州: 兰州大学, 2020.
ZHANG D X.Prediction of wind speed time series based on LSTM and ARIMA[D]. Lanzhou: Lanzhou University, 2020.
[8] 唐振浩, 赵赓楠, 曹生现, 等. 基于SWLSTM算法的超短期风向预测[J]. 中国电机工程学报, 2019, 39(15): 4459-4468.
TANG Z H, ZHAO G N, CAO S X, et al.Very short-term wind direction prediction via self-tuning wavelet long-short term memory neural network[J]. Proceedings of the CSEE, 2019, 39(15): 4459-4468.
[9] 向玲, 李京蓄, 王朋鹤, 等. 基于VMD-FIG和参数优化GRU的风速多步区间预测[J]. 太阳能学报, 2021, 42(10): 237-242.
XIANG L, LI J X, WANG P H, et al.Wind speed multistep interval forecasting based on VMD-FIG and parameter-optimized GRU[J]. Acta energiae solaris sinica, 2021, 42(10): 237-242.
[10] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[11] PACKARD N H, CRUTCHFIELD J P, FARMER J D, et al.Geometry from a time series[J]. Physical review letters, 1980, 45(9): 712-716.
[12] DEHGHANI M, HUBÁLOVSKÝ Š, TROJOVSKÝ P. Northern goshawk optimization: a new swarm-based algorithm for solving optimization problems[J]. IEEE access, 2021, 9: 162059-162080.
[13] 方军强. 基于变分模态分解的船用齿轮箱故障诊断研究[D]. 武汉: 武汉理工大学, 2017.
FANG J Q.Research on fault diagnosis of marine gearbox based on variational mode decomposition[D]. Wuhan: Wuhan University of Technology, 2017.
[14] 陆振波, 蔡志明, 姜可宇. 基于改进的C-C方法的相空间重构参数选择[J]. 系统仿真学报, 2007, 19(11): 2527-2529, 2538.
LU Z B, CAI Z M, JIANG K Y.Determination of embedding parameters for phase space reconstruction based on improved C-C method[J]. Journal of system simulation, 2007, 19(11): 2527-2529, 2538.
[15] 向玲, 刘佳宁, 苏浩, 等. 基于CEEMDAN二次分解和LSTM的风速多步预测研究[J]. 太阳能学报, 2022, 43(8): 334-339.
XIANG L, LIU J N, SU H, et al.Research on multi-step wind speed forecast based on CEEMDAN secondary decomposition and LSTM[J]. Acta energiae solaris sinica, 2022, 43(8): 334-339.
[16] FANTA H, SHAO Z W, MA L Z.SiTGRU: Single-tunnelled gated recurrent unit for abnormality detection[J]. Information sciences, 2020, 524: 15-32.
[17] ZHANG Z D, YE L, QIN H, et al.Wind speed prediction method using shared weight long short-term memory network and gaussian process regression[J]. Applied energy, 2019, 247: 270-284.
基金
国家自然科学基金(51909010); 湖北省自然科学基金(2022CFD170); 梯级水电站运行与控制湖北省重点实验室开放基金(2202KJX10)