水风光互补系统一次调频方案研究

朱博, 吴水军, 黄柯昊, 周子超, 邓涵, 徐韬

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 412-421.

PDF(2382 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2382 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 412-421. DOI: 10.19912/j.0254-0096.tynxb.2022-1979

水风光互补系统一次调频方案研究

  • 朱博1, 吴水军2, 黄柯昊3, 周子超1, 邓涵1, 徐韬1
作者信息 +

RESEARCH ON PRIMARY FREQUENCY REGULATION SCHEME OF WATER-WIND-SOLAR COMPLEMENTARY SYSTEM

  • Zhu Bo1, Wu Shuijun2, Huang Kehao3, Zhou Zichao1, Deng Han1, Xu Tao1
Author information +
文章历史 +

摘要

为解决新能源并网后产生的频率问题,提出一种考虑水风光互补的调频策略。首先,建立含风、水、光、荷的简单系统数学模型;其次,结合水轮机、风电机组、光伏及其调频策略所对应的代数微分方程和基于直流潮流的系统网络方程,推导出负荷扰动时水轮机、风电机组、光伏并网节点频率响应的频域解析式;最后根据解析式分析调频死区和调频控制参数等对系统频率的影响,提出一种水风光互补系统联合调频方案。在仿真软件PSD-BPA中搭建四机系统及实际电网的仿真模型,对调频方案的有效性和可行性进行验证,多场景下仿真结果表明该方法可提高系统一次调频能力。

Abstract

New energy increases in proportion year after year in Yunan Power Grid. In order to solve the frequency problem caused by the integration of new energy into the grid, this paper proposed a frequency regulation strategy in consideration of complementary water, wind and light. First, a simple system mathematical model with wind, water, light and charge was established. Secondly, by combining the algebraic differential equations corresponding to water turbine, wind turbine, photovoltaic, and their frequency regulation strategy with the system network equations on the basis of DC power flow, the frequency domain analytical expressions for the frequency response of water turbines, wind turbines, and photovoltaic grid connected nodes under load disturbances were derived. According to the analytical formula of the impact of frequency regulation dead zone and frequency regulation control parameter on the system frequency, a joint frequency modulation scheme for water solar complementary systems was proposed. A simulation model of the four machine system and the actual power grid was built in the simulation software PSD-BPA to verify the effectiveness and feasibility of the frequency regulation scheme. The simulation results in multiple scenarios indicate that this method can improve the system’s primary frequency regulation ability.

关键词

可再生能源 / 频率响应 / 下垂控制 / 水风光互补系统 / 死区 / 水锤效应

Key words

renewable energy / frequency response / droop control / water-wind-solar complementary system / dead zones / water hammer effect

引用本文

导出引用
朱博, 吴水军, 黄柯昊, 周子超, 邓涵, 徐韬. 水风光互补系统一次调频方案研究[J]. 太阳能学报. 2024, 45(5): 412-421 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1979
Zhu Bo, Wu Shuijun, Huang Kehao, Zhou Zichao, Deng Han, Xu Tao. RESEARCH ON PRIMARY FREQUENCY REGULATION SCHEME OF WATER-WIND-SOLAR COMPLEMENTARY SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 412-421 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1979
中图分类号: TM73   

参考文献

[1] 王路平, 谢小荣, 刘颖, 等. 多直流馈入受端电网短期频率稳定性的实时协调控制方法[J]. 中国电机工程学报, 2018, 38(8): 2205-2212, 2531.
WANG L P, XIE X R, LIU Y, et al.Real-time coordinated control of short-term frequency stability for the receiving-end systems with multi-infeed HVDC transmissions[J]. Proceedings of the CSEE, 2018, 38(8): 2205-2212, 2531.
[2] 李世春, 田冰杰, 李惠子, 等. 基于频率安全约束与临界惯量计算的分时段限制风电出力方法[J]. 电力系统保护与控制, 2022, 50(15): 60-71.
LI S C, TIAN B J, LI H Z, et al.Method for limiting wind power output in time periods based on frequency safety constraints and a critical inertia calculation[J]. Power system protection and control, 2022, 50(15): 60-71.
[3] 麻常辉, 潘志远, 刘超男, 等. 基于自适应下垂控制的风光储微网调频研究[J]. 电力系统保护与控制, 2015, 43(23): 21-27.
MA C H, PAN Z Y, LIU C N, et al.Frequency regulation research of wind-PV-ES hybrid micro-grid system based on adaptive droop control[J]. Power system protection and control, 2015, 43(23): 21-27.
[4] 盛四清, 赵文天, 樊茂森. 适应新能源高占比系统的低频减载优化方法[J]. 太阳能学报, 2022, 43(2): 157-162.
SHENG S Q, ZHAO W T, FAN M S.Optimization method of ufls for high proportion of new energy proportion system[J]. Acta energiae solaris sinica, 2022, 43(2): 157-162.
[5] 柯德平, 冯帅帅, 刘福锁, 等. 新能源发电调控参与的送端电网直流闭锁紧急频率控制策略快速优化[J]. 电工技术学报, 2022, 37(5): 1204-1218.
KE D P, FENG S S, LIU F S, et al.Rapid optimization for emergent frequency control strategy with the power regulation of renewable energy during the loss of DC connection[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1204-1218.
[6] 孟庆伟, 肖尧, 陈红州. 基于事件触发的速动一次调频方法与控制策略[J]. 电力自动化设备, 2021, 41(1): 198-205.
MENG Q W, XIAO Y, CHEN H Z.Quick primary frequency regulation method and control strategy based on event trigger[J]. Electric power automation equipment, 2021, 41(1): 198-205.
[7] 刘颖明, 王树旗, 王晓东. 基于广义预测控制的风电场调频控制策略研究[J]. 太阳能学报, 2022, 43(3): 405-410.
LIU Y M, WANG S Q, WANG X D.Secondary frequency regulation control of wind farm based on genrealized predictive control[J]. Acta energiae solaris sinica, 2022, 43(3): 405-410.
[8] 严干贵, 张善峰, 贾祺, 等. 光伏发电主动参与电网频率调节的机理分析[J]. 太阳能学报, 2021, 42(8): 191-199.
YAN G G, ZHANG S F, JIA Q, et al.Mechanism analysis of pv generation actively participating in power grid frequency regulation[J]. Acta energiae solaris sinica, 2021, 42(8): 191-199.
[9] 张健, 李文锋, 王晖, 等. 多电源梯级调频方案及风电场级调频时序优化策略[J]. 电力系统自动化, 2019, 43(15): 93-100.
ZHANG J, LI W F, WANG H, et al.Multi-source cascaded frequency modulation scheme and time-sequence optimization strategy of frequency modulation at level of wind farm[J]. Automation of electric power systems, 2019, 43(15): 93-100.
[10] 钟诚, 周顺康, 严干贵, 等. 基于变减载率的光伏发电参与电网调频控制策略[J]. 电工技术学报, 2019, 34(5): 1013-1024.
ZHONG C, ZHOU S K, YAN G G, et al.A new frequency regulation control strategy for photovoltaic power plant based on variable power reserve level control[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1013-1024.
[11] 王凡, 李海峰, 胥国毅, 等. 调频关键参数对电网频率特性的影响及其灵敏度分析[J]. 电力系统保护与控制, 2020, 48(20): 1-8.
WANG F, LI H F, XU G Y, et al.Influence of key parameters of frequency control on frequency characteristics of power grid and sensitivity analysis[J]. Power system protection and control, 2020, 48(20): 1-8.
[12] 刘洋, 邵广惠, 张弘鹏, 等. 新能源参与系统一次调频分析及参数设置[J]. 电网技术, 2020, 44(2): 683-689.
LIU Y, SHAO G H, ZHANG H P, et al.Analysis of renewable energy participation in primary frequency regulation and parameter setting scheme of power grid[J]. Power system technology, 2020, 44(2): 683-689.
[13] 明波, 黄强, 王义民, 等. 水-光电联合运行短期调度可行性分析[J]. 太阳能学报, 2015, 36(11): 2731-2737.
MING B, HUANG Q, WANG Y M, et al.The feasibility analysis of short-term scheduling for joint operation of hydropower and photoelectric[J]. Acta energiae solaris sinica, 2015, 36(11): 2731-2737.
[14] 邹云阳, 杨莉. 基于经典场景集的风光水虚拟电厂协同调度模型[J]. 电网技术, 2015, 39(7): 1855-1859.
ZOU Y Y, YANG L.Synergetic dispatch models of a wind/PV/hydro virtual power plant based on representative scenario set[J]. Power system technology, 2015, 39(7): 1855-1859.
[15] 朱博, 束洪春, 吴水军, 等. 风电调频补偿水锤效应的频率特性分析[J]. 电力系统保护与控制, 2023, 51(2): 65-76.
ZHU B, SHU H C, WU S J, et al.Analysis of frequency characteristics of water hammer effect compensated by wind power frequency modulation[J]. Power system protection and control, 2023, 51(2): 65-76.
[16] 温正楠, 刘继春. 风光水互补发电系统与需求侧数据中心联动的优化调度方法[J]. 电网技术, 2019, 43(7): 2449-2460.
WEN Z N, LIU J C.A optimal scheduling method for hybrid wind-solar-hydro power generation system with data center in demand side[J]. Power system technology, 2019, 43(7): 2449-2460.
[17] 孙春顺, 王耀南, 李欣然. 水电-风电系统联合运行研究[J]. 太阳能学报, 2009, 30(2): 232-236.
SUN C S, WANG Y N, LI X R.Study on combined operation of hydro and wind power generation system[J]. Acta energiae solaris sinica, 2009, 30(2): 232-236.
[18] 程海花, 寇宇, 周琳, 等. 面向清洁能源消纳的流域型风光水多能互补基地协同优化调度模式与机制[J]. 电力自动化设备, 2019, 39(10): 61-70.
CHENG H H, KOU Y, ZHOU L, et al.Collaborative optimal dispatching mode and mechanism of watershed-type wind-solar-water multi-energy complementary bases for clean energy absorption[J]. Electric power automation equipment, 2019, 39(10): 61-70.

基金

国家自然科学基金重点项目(52037003); 云南省重大专项资助项目(202002AF080001)

PDF(2382 KB)

Accesses

Citation

Detail

段落导航
相关文章

/