大功率质子交换膜燃料电池建模及仿真

陈家城, 周苏

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 290-297.

PDF(1830 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1830 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 290-297. DOI: 10.19912/j.0254-0096.tynxb.2022-1982

大功率质子交换膜燃料电池建模及仿真

  • 陈家城1, 周苏2
作者信息 +

MODELING AND SIMULATION OF HIGH-POWER PROTON EXCHANGE MEMBRANE FUEL CELLS

  • Chen Jiacheng1, Zhou Su2
Author information +
文章历史 +

摘要

针对70 kW大功率燃料电池系统进行建模,基于Simulink平台搭建质子交换膜燃料电池电堆系统模型。基于该模型在稳态下研究温度、膜含水量、压力对电池输出性能的影响,分析水气跨膜运输情况。仿真结果表明电流密度在0.4~1.0 A/cm范围内时,电堆输出电压保持稳定。然后在新欧洲驾驶循环(NEDC)动态工况下,分析电池系统输出性能和水气跨膜传输情况,结果表明所建模型可用于大功率车用PEMFC研究。

Abstract

Proton exchange membrane fuel cells (PEMFC) are efficient and environmentally friendly energy conversion devices with broad application prospects in multiple fields. To achieve stable and reliable operation of high-power vehicle-mounted PEMFC systems, this study focuses on modeling a 70 kW high-power fuel cell system, a model of proton exchange membrane fuel cells (PEMFC) system was proposed based on the Simulink platform. With the proposed system model, the effects of temperature, membrane water content and pressure on the output performance of PEMFC were studied under the steady state, and the transmembrane transport of water and gas was analyzed. Simulation results indicate that the stack output voltage remains stable when the current density is within the range of 0.4-1.0 A/cm2. The dynamic condition of NEDC was also applied and analyzed. The results show that the proposed model can be used in studying high-power PEMFC for automotives.

关键词

质子交换膜燃料电池 / Simulink / 仿真模型 / 电压特性 / 质量传输 / 动态分析

Key words

proton exchange membrane fuel cells (PEMFC) / Simulink / simulation modeling / voltage characteristics / mass transportation / dynamic analysis

引用本文

导出引用
陈家城, 周苏. 大功率质子交换膜燃料电池建模及仿真[J]. 太阳能学报. 2024, 45(3): 290-297 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1982
Chen Jiacheng, Zhou Su. MODELING AND SIMULATION OF HIGH-POWER PROTON EXCHANGE MEMBRANE FUEL CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 290-297 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1982
中图分类号: TM911.4   

参考文献

[1] CHEN H C, PEI P C, SONG M C.Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[J]. Applied energy, 2015, 142: 154-163.
[2] 柏兴应, 简弃非, 罗立中, 等. 均温板在质子交换膜燃料电池堆热管理中的应用[J]. 华南理工大学学报(自然科学版), 2021, 49(2): 25-32.
BAI X Y, JIAN Q F, LUO L Z, et al.Application of vapor chamber in the thermal management of proton exchange membrane fuel cell stack[J]. Journal of South China University of Technology (natural science edition), 2021, 49(2): 25-32.
[3] 马睿, 任子俊, 谢任友, 等. 基于模型特征分析的质子交换膜燃料电池建模研究综述[J]. 中国电机工程学报, 2021, 41(22): 7712-7730.
MA R, REN Z J, XIE R Y, et al.A comprehensive review for proton exchange membrane fuel cell modeling based on model feature analysis[J]. Proceedings of the CSEE, 2021, 41(22): 7712-7730.
[4] YANG Y, ZHU W C, LI Y, et al.Modeling of PEMFC and analysis of multiple influencing factors on output characteristics[J]. Journal of the Electrochemical society, 2022, 169(3): 034507.
[5] 顾洮, 袁野. 质子交换膜燃料电池仿真建模与分析[J]. 电源技术, 2021, 45(4): 459-462.
GU T, YUAN Y.Simulation modeling and analysis of proton exchange membrane fuel cell[J]. Chinese journal of power sources, 2021, 45(4): 459-462.
[6] 李鹏程, 高松, 孙宾宾. 质子交换膜燃料电池电压仿真与分析[J]. 山东理工大学学报(自然科学版), 2021, 35(1): 56-62.
LI P C, GAO S, SUN B B.Simulation and analysis of proton exchange membrane fuel cell voltage[J]. Journal of Shandong University of Technology (natural science edition), 2021, 35(1): 56-62.
[7] 周嫣. 质子交换膜燃料电池建模与动态响应仿真分析[J]. 电子技术与软件工程, 2022(14): 113-117.
ZHOU Y.Modeling and dynamic response simulation analysis of proton exchange membrane fuel cell[J]. Electronic technology & software engineering, 2022(14): 113-117.
[8] JABBARY A, ROSTAMI ARNESA S, SAMANIPOUR H, et al.Numerical investigation of 3D rhombus designed PEMFC on the cell performance[J]. International journal of green energy, 2021, 18(5): 425-442.
[9] DONG Z Z, LIU Y W, QIN Y Z.Coupled FEM and CFD modeling of structure deformation and performance of PEMFC considering the effects of membrane water content[J]. Energies, 2022, 15(15): 5319.
[10] 张可健, 曲大为, 兰洪星, 等. 基于MATLAB/Simulink的氢燃料电池系统建模与仿真[J]. 科学技术与工程, 2021, 21(13): 5380-5386.
ZHANG K J, QU D W, LAN H X, et al.Hydrogen fuel cell system modeling and simulation based on MATLAB/simulink[J]. Science technology and engineering, 2021, 21(13): 5380-5386.
[11] 李文涛, 孙宾宾, 鲁花蕾, 等. 质子交换膜燃料电池建模与仿真分析[J]. 山东理工大学学报(自然科学版), 2022, 36(6): 13-19.
LI W T, SUN B B, LU H L, et al.Modeling and simulation analysis of proton exchange membrane fuel cell[J]. Journal of Shandong University of Technology (natural science edition), 2022, 36(6): 13-19.
[12] SUN Y N, MAO L, WANG H, et al.Simulation study on magnetic field distribution of PEMFC[J]. International journal of hydrogen energy, 2022, 47(78): 33439-33452.
[13] LI D X, MA Z S, SHAO W, et al.Finite time thermodynamic modeling and performance analysis of high-temperature proton exchange membrane fuel cells[J]. International journal of molecular sciences, 2022, 23(16): 9157.
[14] 张雪霞, 黄平, 蒋宇, 等. 动态机车工况下质子交换膜燃料电池电堆衰退性能分析[J]. 电工技术学报, 2022, 37(18): 4798-4806.
ZHANG X X, HUANG P, JIANG Y, et al.Degradation performance analysis of proton exchange membrane fuel cell stack under dynamic locomotive conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4798-4806.
[15] 石磊, 许思传, 刘泽. 基于人工神经网络的3 kW质子交换膜燃料电池电堆一致性优化[J]. 太阳能学报, 2022, 43(8): 498-503.
SHI L, XU S C, LIU Z.Consistency optimization of 3 kW proton exchange membrane fuel cell stack based on artificial neural network[J]. Acta energiae solaris sinica, 2022, 43(8): 498-503.
[16] 潘瑞, 杨朵, 陈宗海. 质子交换膜燃料电池建模方法研究综述[C]//第18届中国系统仿真技术及其应用学术年会论文集(18th CCSSTA 2017). 兰州, 中国, 2017: 110-114.
PAN R, YANG D, CHEN Z H. Review of modeling method study for proton exchange membrane fuel cell[C]//Proceedings of the 18th China System Simulation Technology and Its Application Academic Annual Conference (18th CCSSTA2017). Lanzhou, China: 110-114.
[17] AMPHLETT J C, BAUMERT R M, MANN R F, et al.Parametric modelling of the performance of a 5-kW proton-exchange membrane fuel cell stack[J]. Journal of power sources, 1994, 49(1/2/3): 349-356.
[18] 孙桂芝, 宋振泉. 基于Matlab/Simulink的质子交换膜燃料电池建模仿真[J]. 河南科技, 2021, 40(6): 126-129.
SUN G Z, SONG Z Q.Modeling and simulation of proton exchange membrane fuel cell based on matlab/simulink[J]. Henan science and technology, 2021, 40(6): 126-129.
[19] IJAODOLA O S, EL-HASSAN Z, OGUNGBEMI E, et al.Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy, 2019, 179: 246-267.
[20] 夏增刚. 质子交换膜燃料电池电堆水传输机理综述[J]. 时代汽车, 2022(5): 174-175.
XIA Z G.Review on water transport mechanism of proton exchange membrane fuel cell stack[J]. Auto time, 2022(5): 174-175.
[21] GE S H, YI B L.A mathematical model for PEMFC in different flow modes[J]. Journal of power sources, 2003, 124(1): 1-11.
[22] 李龙, 梁前超, 赵建锋, 等. 空冷型PEMFC的动态建模仿真及验证[J]. 电源技术, 2020, 44(2): 200-203, 259.
LI L, LIANG Q C, ZHAO J F, et al.Dynamic modeling simulation and verification of air-breathing PEMFC fuel cell[J]. Chinese journal of power sources, 2020, 44(2): 200-203, 259.

基金

福建省中青年教师教育科研项目(JAT220659); 2022年度同济大学访问学者(F2023001)

PDF(1830 KB)

Accesses

Citation

Detail

段落导航
相关文章

/