有源配电网精细化负荷预测软件开发与应用

张瑞雪, 侯哲帆, 倪永峰

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 380-390.

PDF(2117 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2117 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 380-390. DOI: 10.19912/j.0254-0096.tynxb.2022-1989

有源配电网精细化负荷预测软件开发与应用

  • 张瑞雪1,2, 侯哲帆1,2, 倪永峰1,2
作者信息 +

DEVELOPMENT AND APPLICATION OF REFINED LOAD FORECASTING SOFTWARE FOR ACTIVE DISTRIBUTION NETWORK

  • Zhang Ruixue1,2, Hou Zhefan1,2, Ni Yongfeng1,2
Author information +
文章历史 +

摘要

研究新型有源配电网背景下的精细化负荷预测方法,基于数值天气预报采用卷积神经网络Resnet预测光伏功率,考虑负荷特性和气象影响因素采用GRU算法预测用电负荷,光伏功率发电分量和用电负荷分量的预测结果累加得到有源负荷的精细化预测结果。此外,基于配电云主站设计精细化负荷预测的软件架构和功能模块,开展基于短期负荷预测的配电网动态网络重构研究,考虑负荷时序分段,给出日前24小时的动态优化策略。最后,在某地市配电区域进行算例验证,结果表明:对于含源负荷,精细化负荷预测比直接等值负荷预测结果更准确,基于精细化负荷预测的动态网络重构可降低负荷均衡度并优化光伏消纳。

Abstract

Study the refined load forecasting method under the background of the new active distribution network: based on the numerical weather forecast, the convolutional neural network Resnet is used to forecast the photovoltaic power, the GRU algorithm is used to forecast the electrical load considering the load characteristics and meteorological factors, and the refined forecasting results of the active load are obtained by accumulating the forecasting results of the photovoltaic power generation component and the electrical load component. In addition, the software architecture and functional modules of refined load forecasting are designed based on the distribution cloud master station. The research on dynamic network reconfiguration of distribution network based on short-term load forecasting is carried out, and the dynamic optimization strategy of 24 hours ahead of the day is given considering the load sequence segmentation. Finally, through the verification of an example in the distribution area of a city, the results show that the refined load forecasting is more accurate than the direct equivalent load forecasting for the source load, and the dynamic network reconfiguration based on the refined load forecasting can reduce the load balance and optimize the photovoltaic consumption.

关键词

光伏发电 / 配电网 / 分布式发电 / 负荷预测 / 功率预测 / 动态网络重构

Key words

PV power / distribution networks / distributed power generation / load forecasting / power forecasting / dynamic network reconfiguration

引用本文

导出引用
张瑞雪, 侯哲帆, 倪永峰. 有源配电网精细化负荷预测软件开发与应用[J]. 太阳能学报. 2024, 45(5): 380-390 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1989
Zhang Ruixue, Hou Zhefan, Ni Yongfeng. DEVELOPMENT AND APPLICATION OF REFINED LOAD FORECASTING SOFTWARE FOR ACTIVE DISTRIBUTION NETWORK[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 380-390 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1989
中图分类号: TM76   

参考文献

[1] 罗金满, 刘丽媛, 刘飘, 等. 考虑源网荷储协调的主动配电网优化调度方法研究[J]. 电力系统保护与控制, 2022, 50(1): 167-173.
LUO J M, LIU L Y, LIU P, et al.An optimal scheduling method for active distribution network considering source network load storage coordination[J]. Power system protection and control, 2022, 50(1): 167-173.
[2] 苏小林, 吴富杰, 阎晓霞, 等. 主动配电网的分层调控体系及区域自治策略[J]. 电力系统自动化, 2017, 41(6): 129-134, 141.
SU X L, WU F J, YAN X X, et al.Hierarchical coordinated control system of active distribution network and its regional autonomy strategy[J]. Automation of electric power systems, 2017, 41(6): 129-134, 141.
[3] 王献志, 曾四鸣, 周雪青, 等. 基于XGBoost联合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(4): 236-242.
WANG X Z, ZENG S M, ZHOU X Q.Power forecast of photovoltaic generation based on XGBoost combined model[J]. Acta energiae solaris sinica, 2022, 43(4): 236-242.
[4] 戚晓侠. 基于深度学习的光伏/风电功率预测研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
QI X X.Research on photovoltaic/wind power forecasting based on deep learning[D]. Harbin: Harbin Engineering University, 2020.
[5] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137.
LU J X, ZHANG Q P, YANG Z H, et al.Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of electric power systems, 2019, 43(8): 131-137.
[6] 杨修德, 王金梅, 张丽娜, 等. 基于XGBoost的多维度超短期负荷预测研究[J]. 电气自动化, 2019, 41(1): 32-34.
YANG X D, WANG J M, ZHANG L N, et al.Multi-dimensional ultra-short load forecasting based on XGBoost[J]. Electrical automation, 2019, 41(1): 32-34.
[7] 彭文, 王金睿, 尹山青. 电力市场中基于Attention-LSTM的短期负荷预测模型[J]. 电网技术, 2019, 43(5): 1745-1751.
PENG W, WANG J R, YIN S Q.Short-term load forecasting model based on attention-LSTM in electricity market[J]. Power system technology, 2019, 43(5): 1745-1751.
[8] 王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5): 53-58.
WANG Z P, ZHAO B, JI W J, et al.Short-term load forecasting method based on GRU-NN model[J]. Automation of electric power systems, 2019, 43(5): 53-58.
[9] 张素香, 赵丙镇, 王风雨, 等. 海量数据下的电力负荷短期预测[J]. 中国电机工程学报, 2015, 35(1): 37-42.
ZHANG S X, ZHAO B Z, WANG F Y, et al.Short-term power load forecasting based on big data[J]. Proceedings of the CSEE, 2015, 35(1): 37-42.
[10] YANG D Z, JIRUTITIJAROEN P, WALSH W M.Hourly solar irradiance time series forecasting using cloud cover index[J]. Solar energy, 2012, 86(12): 3531-3543.
[11] 王育飞, 付玉超, 薛花. 基于Chaos-EEMD-PFBD分解和GA-BP神经网络的光伏发电功率超短期预测法[J]. 太阳能学报, 2020, 41(12): 55-62.
WANG Y F, FU Y C, XUE H.Ultra-short-term forecasting method of photovoltaic power generation based on chaos-eemd-pfbd decomposition and GA-BP neural networks[J]. Acta energiae solaris sinica, 2020, 41(12): 55-62.
[12] 张姗, 冬雷, 纪德洋, 等. 基于NWP相似性分析的超短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(4): 142-147.
ZHANG S, DONG L, JI D Y, et al.Power forecasting of ultra-short-term photovoltaic station based on nwp similarity analysis[J]. Acta energiae solaris sinica, 2022, 43(4): 142-147.
[13] RENDON-SANCHEZ J F, DE MENEZES L M. Structural combination of seasonal exponential smoothing forecasts applied to load forecasting[J]. European journal of operational research, 2019, 275(3): 916-924.
[14] ZHU X H, SHEN M.Based on the ARIMA model with grey theory for short term load forecasting model[C]//2012 International Conference on Systems and Informatics (ICSAI2012). Yantai, China, 2012: 564-567.
[15] LI J H, LEI Y S, HUANG Q, et al.Feature analysis of generalized load patterns considering active load response to real-time pricing[J]. IEEE access, 2019, 7: 119443-119453.
[16] 戴锦, 肖文波, 胡芳雨, 等. 光伏发电性能物理预测模型的研究[J]. 电源技术, 2018, 42(2): 262-266.
DAI J, XIAO W B, HU F Y, et al.Research of photovoltaic prediction model[J]. Chinese journal of power sources, 2018, 42(2): 262-266.
[17] DOLARA A, LEVA S, MANZOLINI G.Comparison of different physical models for PV power output prediction[J]. Solar energy, 2015, 119: 83-99.
[18] 汤健, 侯慧娟, 陈洪岗, 等. 基于BI-GRU改进的Seq2Seq网络的变压器油中溶解气体浓度预测方法[J]. 电力自动化设备, 2022, 42(3): 196-202, 217.
TANG J, HOU H J, CHEN H G, et al.Concentration prediction method based on Seq2Seq network improved by BI-GRU for dissolved gas in transformer oil[J]. Electric power automation equipment, 2022, 42(3):196-202, 217.
[19] 姚旭, 程向向, 钱传伟, 等. 配电云主站架构方案与关键技术[J]. 浙江电力, 2021, 40(3): 51-58.
YAO X, CHENG X X, QIAN C W, et al.Architecture scheme and key technology of distribution cloud master station[J]. Zhejiang electric power, 2021, 40(3): 51-58.
[20] DL/T1711—2017, 电网短期和超短期负荷预测技术规范[S].
DL/T1711—2017, Technical specification for short term and ultra-short term load forecasting in power grid[S].
[21] 张琳娜, 乐健, 李昊炅. 基于混合整数线性规划的含ZIP负荷有源配电网重构方法[J]. 电力系统保护与控制, 2022, 50(8): 25-32.
ZHANG L N, LE J, LI H J.Reconfiguration method of an active distribution network with a ZIP load model based on mixed integer linear programming[J]. Power system protection and control, 2022, 50(8): 25-32.
[22] 王淳, 高元海. 采用最优模糊C均值聚类和改进化学反应算法的配电网络动态重构[J]. 中国电机工程学报, 2014, 34(10): 1682-1691.
WANG C, GAO Y H.Dynamic reconfiguration of distribution network based on optimal fuzzy C-means clustering and improved chemical reaction optimization[J]. Proceedings of the CSEE, 2014, 34(10): 1682-1691.
[23] 张岚. 考虑时序性出力DG接入的配电网重构[D]. 郑州: 郑州大学, 2017.
ZHANG L.Reconfiguration of distribution network considering DG with time-varying output[D]. Zhengzhou: Zhengzhou University, 2017.
[24] GB/T 40607—2021, 调度侧风电或光伏功率预测系统技术要求[S].
GB/T 40607—2021, Technical requirements for dispatching side forecasting system of wind or photovoltaic power[S].

基金

国家电网有限公司总部管理科技项目资助,国家电网公司科技项目高比例清洁能源县域配电网安全运行控制关键技术研究(5400-202255279A-2-0-XG)

PDF(2117 KB)

Accesses

Citation

Detail

段落导航
相关文章

/