提出一种结合改进遗传算法(GA)和粒子群算法(PSO)的GA-PSO混合算法对复杂地形的风力机排布方案进行优化。以湖南省某实际复杂地形为对象,开展风场全风向数值模拟,结合长期观测风资料评估区域的潜在风能分布,提出考虑网格预处理、时变变异率、唯一化和并行化的改进GA(IGA)对风力机排布方案进行优化,在此基础上利用PSO算法进行进一步优化,并针对尾流模型和目标函数对优化结果的影响进行不确定性分析。结果表明,在复杂地形风电场微观选址方面,所提GA-PSO算法比贪婪算法、GA、IGA分别改善16.4%、12.9%和5.1%。
Abstract
A hybrid GA-PSO algorithm combining improved genetic algorithm (GA) and particle swarm optimization (PSO) is proposed to optimize the wind turbine layout scheme in complex terrain. Taking a real complex terrain in Hunan Province as the target, the full wind direction numerical simulation of the wind farm is carried out, and the potential wind energy distribution of the region is evaluated by combining long-term observed wind data, and the improved GA (IGA) considering grid preprocessing, time-varying mutation rate, uniqueness and parallelization is proposed for cluster optimization of the wind turbine layout scheme, based on which the further optimization is carried out using the PSO algorithm. Uncertainty analysis is performed for the effect of the wake model and objective function model on the optimization results. The results show that the proposed GA-PSO algorithm improves 16.4%, 12.9%, and 5.1% over the greedy algorithm, GA, and IGA, respectively, in wind farm micro-siting in complex terrain.
关键词
风电场 /
遗传算法 /
粒子群算法 /
复杂地形 /
微观选址 /
计算流体动力学
Key words
wind farm /
genetic algorithms /
particle swarm optimization /
complex terrain /
micro-siting /
computational fluid dynamics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GUALTIERI G.A novel method for wind farm layout optimization based on wind turbine selection[J]. Energy conversion and management, 2019, 193: 106-123.
[2] 胡伟成, 杨庆山, 张建. 多国规范山地风速地形修正系数对比研究[J]. 工程力学, 2018, 35(10): 203-211.
HU W C, YANG Q S, ZHANG J.Comparative study on wind topographic factor of hilly terrain by different codes and standards[J]. Engineering mechanics, 2018, 35(10): 203-211.
[3] YANG Q S, LI H, LI T, et al.Wind farm layout optimization for levelized cost of energy minimization with combined analytical wake model and hybrid optimization strategy[J]. Energy conversion and management, 2021, 248: 114778.
[4] MOSETTI G, POLONI C, DIVIACCO B.Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm[J]. Journal of wind engineering and industrial aerodynamics, 1994, 51(1): 105-116.
[5] VASEL-BE-HAGH A, ARCHER C L. Wind farm hub height optimization[J]. Applied energy, 2017, 195: 905-921.
[6] TAO S Y, XU Q S, FEIJÓO A, et al. Wind farm layout optimization with a three-dimensional Gaussian wake model[J]. Renewable energy, 2020, 159: 553-569.
[7] SONG M X, CHEN K, ZHANG X, et al.Optimization of wind turbine micro-siting for reducing the sensitivity of power generation to wind direction[J]. Renewable energy, 2016, 85: 57-65.
[8] FENG J, SHEN W Z.Solving the wind farm layout optimization problem using random search algorithm[J]. Renewable energy, 2015, 78: 182-192.
[9] GUIRGUIS D, ROMERO D A, AMON C H.Toward efficient optimization of wind farm layouts: utilizing exact gradient information[J]. Applied energy, 2016, 179: 110-123.
[10] KUO J Y J, ROMERO D A, BECK J C, et al. Wind farm layout optimization on complex terrains-integrating a CFD wake model with mixed-integer programming[J]. Applied energy, 2016, 178: 404-414.
[11] JENSEN N.A note on wind generator interaction[R]. Risø National Laboratory, Denmark, 1983.
[12] GRADY S A, HUSSAINI M Y, ABDULLAH M M.Placement of wind turbines using genetic algorithms[J]. Renewable energy, 2005, 30(2): 259-270.
[13] MITTAL P, KULKARNI K, MITRA K.A novel and efficient hybrid optimization approach for wind farm micro-siting[J]. IFAC-PapersOnLine, 2015, 48(8): 397-402.
[14] FRANDSEN S, BARTHELMIE R, PRYOR S, et al.Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind energy, 2006, 9(1/2): 39-53.
[15] TIAN L L, ZHU W J, SHEN W Z, et al.Development and validation of a new two-dimensional wake model for wind turbine wakes[J]. Journal of wind engineering and industrial aerodynamics, 2015, 137: 90-99.
[16] FENG J, SHEN W Z.Wind farm layout optimization in complex terrain: a preliminary study on a Gaussian hill[J]. Journal of physics: conference series, 2014, 524: 012146.
[17] BASTANKHAH M, PORTÉ-AGEL F.A new analytical model for wind-turbine wakes[J]. Renewable energy, 2014, 70: 116-123.
[18] BROGNA R, FENG J, SØRENSEN J N, et al. A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain[J]. Applied energy, 2020, 259: 114189.
[19] FENG J, SHEN W Z.Design optimization of offshore wind farms with multiple types of wind turbines[J]. Applied energy, 2017, 205: 1283-1297.
[20] HU W C, YANG Q S, CHEN H P, et al.A novel approach for wind farm micro-siting in complex terrain based on an improved genetic algorithm[J]. Energy, 2022, 251: 123970.
[21] NAVARRO DIAZ G P, SAULO A C, OTERO A D. Full wind rose wind farm simulation including wake and terrain effects for energy yield assessment[J]. Energy, 2021, 237: 121642.
[22] YANG Q S, HU J X, LAW S S.Optimization of wind farm layout with modified genetic algorithm based on Boolean code[J]. Journal of wind engineering and industrial aerodynamics, 2018, 181: 61-68.
[23] UCHIDA T, LI G.Comparison of RANS and LES in the prediction of airflow field over steep complex terrain[J]. Open journal of fluid dynamics, 2018, 8(3): 286-307.
[24] CHEN J C, WANG F, STELSON K A.A mathematical approach to minimizing the cost of energy for large utility wind turbines[J]. Applied energy, 2018, 228: 1413-1422.
[25] 胡伟成, 杨庆山, 张建. 湍流边界层中三维山丘地形风场大涡模拟[J]. 工程力学, 2019, 36(4): 72-79.
HU W C, YANG Q S, ZHANG J.Les study of turbulent boundary layers over three-dimensional hills[J]. Engineering mechanics, 2019, 36(4): 72-79.
[26] HU W C, YANG Q S, CHEN H P, et al.Wind field characteristics over hilly and complex terrain in turbulent boundary layers[J]. Energy, 2021, 224: 120070.
[27] GB/T 18710—2002, 风电场风能资源评估方法[S].
GB/T 18710—2002, Methodology of wind energy resource assessment for wind farm[S].
基金
国家自然科学基金(52208479); 江西省自然科学基金(20224BAB214070); 中国博士后科学基金(2022M720577); 浙江省博士后科研择优资助项目(ZJ2022037)