基于最大重叠离散小波变换和深度学习的光伏功率预测

马乐乐, 孔小兵, 郭磊, 刘源延, 刘向杰

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 576-583.

PDF(2076 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2076 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 576-583. DOI: 10.19912/j.0254-0096.tynxb.2022-1993

基于最大重叠离散小波变换和深度学习的光伏功率预测

  • 马乐乐, 孔小兵, 郭磊, 刘源延, 刘向杰
作者信息 +

PHOTOVOLTAIC POWER FORECASTING BASED ON MAXIMUM OVERLAP DISCRETE WAVELET TRANSFORM AND DEEP LEARNING

  • Ma Lele, Kong Xiaobing, Guo Lei, Liu Yuanyan, Liu Xiangjie
Author information +
文章历史 +

摘要

针对光伏功率时间序列的非平稳特性,提出一种基于最大重叠离散小波变换(MODWT)和长短期记忆网络(LSTM)的光伏功率组合预测模型。利用皮尔逊相关系数确定影响光伏功率的重要气象因素,基于MODWT算法对历史光伏功率序列进行分解,将选取的气象因素与分解得到的平稳子序列共同构成各个LSTM网络输入,通过汇总重构每个LSTM网络的子序列预测结果得到最终的光伏功率预测结果。从理论层面分析所建立的MODWT算法的完全重构性,并基于李雅普诺夫稳定性定理推导保证预测网络收敛的学习率范围。仿真对比结果显示,所提出的光伏功率预测模型在预测精度和鲁棒性方面具有明显优势。

Abstract

Aiming at the non-stationary characteristics of PV power time series, this paper proposes a hybrid PV power forecasting model based on maximum overlap discrete wavelet transform (MODWT) and long short-term memory network (LSTM). First, Pearson correlation coefficient is used to identify important meteorological factors while MODWT is used to decompose the historical PV power series. The selected meteorological factors and the decomposed stationary subsequences are combined to form the input of each LSTM network. The sub-sequence prediction results of each LSTM network are integrated and reconstructed to the final PV power prediction results. The complete reconstruction of MODWT algorithm established in this paper is analyzed at the theoretical level, and the range of learning rate to ensure the convergence of the prediction network is derived based on Lyapunov stability theorem. The simulation results show that this proposed forecasting model has the obvious advantages in forecasting accuracy and robustness.

关键词

光伏功率预测 / 长短期记忆网络 / 非平稳时间序列分解 / 预测网络收敛性

Key words

photovoltaic power forecasting / long short-term memory network / non-stationary time series decomposition / convergence of prediction network

引用本文

导出引用
马乐乐, 孔小兵, 郭磊, 刘源延, 刘向杰. 基于最大重叠离散小波变换和深度学习的光伏功率预测[J]. 太阳能学报. 2024, 45(5): 576-583 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1993
Ma Lele, Kong Xiaobing, Guo Lei, Liu Yuanyan, Liu Xiangjie. PHOTOVOLTAIC POWER FORECASTING BASED ON MAXIMUM OVERLAP DISCRETE WAVELET TRANSFORM AND DEEP LEARNING[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 576-583 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1993
中图分类号: TM615   

参考文献

[1] 吉锌格, 李慧, 叶林, 等. 基于波动特性挖掘的短期光伏功率预测[J]. 太阳能学报, 2022, 43(5): 146-155.
JI X G, LI H, YE L, et al.Short-term photovoltaic power forecasting based on fluctuation characteristics mining[J]. Acta energiae solaris sinica, 2022, 43(5): 146-155.
[2] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[3] 张姗, 冬雷, 纪德洋, 等. 基于NWP相似性分析的超短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(4): 142-147.
ZHANG S, DONG L, JI D Y, et al.Power forecasting of ultra-short-term photovoltaic station based on NWP similarity analysis[J]. Acta energiae solaris sinica, 2022, 43(4): 142-147.
[4] LIU X J, ZHANG H, KONG X B, et al.Wind speed forecasting using deep neural network with feature selection[J]. Neurocomputing, 2020, 397: 393-403.
[5] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[6] QING X Y, NIU Y G.Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM[J]. Energy, 2018, 148: 461-468.
[7] GAO M M, LI J J, HONG F, et al.Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM[J]. Energy, 2019, 187: 115838.
[8] LI P T, ZHOU K L, LU X H, et al.A hybrid deep learning model for short-term PV power forecasting[J]. Applied energy, 2020, 259: 114216.
[9] BEHERA M K, NAYAK N.A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm[J]. Engineering science and technology, an international journal, 2020, 23(1): 156-167.
[10] 王粟, 江鑫, 曾亮, 等. 基于VMD-DESN-MSGP模型的超短期光伏功率预测[J]. 电网技术, 2020, 44(3): 917-926.
WANG S, JIANG X, ZENG L, et al.Ultra-short-term photovoltaic power prediction based on VMD-DESN-MSGP model[J]. Power system technology, 2020, 44(3): 917-926.
[11] 王振华. 基于日志分析的网络设备故障预测研究[D]. 重庆: 重庆大学, 2015.
WANG Z H.Study on failure prediction for network equipment based on log analysis[D]. Chongqing: Chongqing University, 2015.
[12] KUSHWAHA V, PINDORIYA N M.A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast[J]. Renewable energy, 2019, 140: 124-139.
[13] 谭小钰, 刘芳, 马俊杰, 等. 基于DBN与T-S时变权重组合的光伏功率超短期预测模型[J]. 太阳能学报, 2021, 42(10): 42-48.
TAN X Y, LIU F, MA J J, et al.Ultra-short-term PV power forecasting model based on DBN and T-S time-varying weight combination[J]. Acta energiae solaris sinica, 2021, 42(10): 42-48.
[14] JIAO R H, HUANG X J, MA X H, et al.A model combining stacked auto encoder and back propagation algorithm for short-term wind power forecasting[J]. IEEE access, 2018, 6: 17851-17858.
[15] WANG K J, QI X X, LIU H D.Photovoltaic power forecasting based LSTM-convolutional network[J]. Energy, 2019, 189: 116225.

基金

国家重点研发计划(2021YFE0190900); 国家自然科学基金(62073136; 62203170); 中国博士后科学基金(2022T150210)

PDF(2076 KB)

Accesses

Citation

Detail

段落导航
相关文章

/