全可再生能源多能互补系统优化配置与运行探索

黄文龙, 葛文超, 任洪波, 朱跃钊, 陈海军

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 351-359.

PDF(1969 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1969 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 351-359. DOI: 10.19912/j.0254-0096.tynxb.2023-0002

全可再生能源多能互补系统优化配置与运行探索

  • 黄文龙1, 葛文超1, 任洪波2, 朱跃钊1, 陈海军1
作者信息 +

EXPLORATION OF OPTIMAL CONFIGURATION AND OPERATION FOR ALL-RENEWABLE MULTI-ENERGY COMPLEMENTARY SYSTEMS

  • Huang Wenlong1, Ge Wenchao1, Ren Hongbo2, Zhu Yuezhao1, Chen Haijun1
Author information +
文章历史 +

摘要

在机组100%为全可再生能源的多能互补系统的基础上,通过部分市网供电及“隔墙售电”消纳改进其容量配置和调度优化模型并通过LINGO求解,考察市网供电和“隔墙售电”对系统经济性和碳排放参数的影响。结果表明:随着隔墙售电的电价增长,系统的运行费用及蓄电池的容量随之下降,在售电电价增至0.33元/kWh后蓄电池单元容量趋于稳定;在售电电价达到0.37元/kWh后系统不再因电价的上升而引起系统运行策略的改变;园区多能互补系统相比不参与“隔墙售电”的传统系统,系统年总费用降低25.9%,年运行成本降低37.8%,碳排放强度由76.9 kgCO2/(m2·a)降至52.3 kgCO2/(m2·a)。

Abstract

Investigating this policy’s impact on such systems is particularly important. In this study, the capacity allocation and dispatching optimization model based on partial grid power supply and“electricity sales in the partition wall”. The impact of grid power supply and“electricity sales in the partition wall” on energy storage ratio, economic efficiency, and carbon emission parameters are examined. The results indicate that as the price of electricity sold in the partition wall increases, the system’s operating cost and battery capacity decrease, with the battery unit capacity stabilizing after the price reaches 0.33 Yuan/kWh. The system’s operating strategy no longer changes after the electricity price reaches 0.37 Yuan/kWh. Compared with a traditional system without "electricity sales in the partition wall," the park multi-energy complementary system is 25.9% more cost-effective, with a 37.8% reduction in annual operating costs and a decrease in carbon emission intensity from 76.9 kgCO2/(m2·a) to 52.3 kgCO2/(m2·a).

关键词

优化设计 / 生物质能 / 多能互补 / 碳排放强度 / 多能源耦合

Key words

optimal design / biomass energy / multi-energy complement / carbon emission intensity / multi-energy coupling

引用本文

导出引用
黄文龙, 葛文超, 任洪波, 朱跃钊, 陈海军. 全可再生能源多能互补系统优化配置与运行探索[J]. 太阳能学报. 2024, 45(5): 351-359 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0002
Huang Wenlong, Ge Wenchao, Ren Hongbo, Zhu Yuezhao, Chen Haijun. EXPLORATION OF OPTIMAL CONFIGURATION AND OPERATION FOR ALL-RENEWABLE MULTI-ENERGY COMPLEMENTARY SYSTEMS[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 351-359 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0002
中图分类号: TK01   

参考文献

[1] 江亿, 胡姗. 中国建筑部门实现碳中和的路径[J]. 暖通空调, 2021, 51(5): 1-13.
JIANG Y, HU S.Paths to carbon neutrality in China’s building sector[J]. Heating ventilating & air conditioning, 2021, 51(5): 1-13.
[2] 许龙, 王庆刚, 杨谋存, 等. 计及资源禀赋的全可再生能源多能互补系统评价指标体系[J]. 电网技术, 2022, 46(10): 4012-4019.
XU L, WANG Q G, YANG M C, et al.Evaluation index system of fully renewable energy multi-energy complementary system considering renewable resource endowment[J]. Power system technology, 2022, 46(10): 4012-4019.
[3] 田德, 陈忠雷, 邓英. 考虑预测误差的综合能源系统优化调度模型[J]. 太阳能学报, 2019, 40(7): 1890-1896.
TIAN D, CHEN Z L, DENG Y.Integrated energy system optimal dispatching model considering prediction errors[J]. Acta energiae solaris sinica, 2019, 40(7): 1890-1896.
[4] 周承翰, 贾宏杰, 靳小龙, 等. 基于机会约束规划的智能楼宇与社区综合能源系统协调优化[J]. 电力系统自动化, 2023, 47(4): 42-50.
ZHOU C H, JIA H J, JIN X L, et al.Coordinated optimization for intelligent building and integrated community energy system based on chance-constrained programming[J]. Automation of electric power systems, 2023, 47(4): 42-50.
[5] 陈锐, 刘硕, 贺先强, 等. 计及源网不确定性的风险评估与优化调度[J]. 电力系统及其自动化学报, 2023, 35(5): 19-27, 72.
CHEN R, LIU S, HE X Q, et al.Risk assessment and optimal dispatching considering source-network uncertainties[J]. Proceedings of the CSU-EPSA, 2023, 35(5): 19-27, 72.
[6] 张笑演, 熊厚博, 王楚通, 等. 基于最优出力区间和碳交易的园区综合能源系统灵活经济调度[J]. 电力系统自动化, 2022, 46(16): 72-83.
ZHANG X Y, XIONG H B, WANG C T, et al.Flexible economic dispatching of park-level integrated energy system based on optimal power output interval and carbon trading[J]. Automation of electric power systems, 2022, 46(16): 72-83.
[7] 林威, 靳小龙, 穆云飞, 等. 区域综合能源系统多目标最优混合潮流算法[J]. 中国电机工程学报, 2017, 37(20): 5829-5839.
LIN W, JIN X L, MU Y F, et al.Multi-objective optimal hybrid power flow algorithm for integrated local area energy system[J]. Proceedings of the CSEE, 2017, 37(20): 5829-5839.
[8] 任洪波, 邓冬冬, 吴琼, 等. 基于热电共融的区域分布式能源互联网协同优化研究[J]. 中国电机工程学报, 2018, 38(14): 4023-4034, 4308.
REN H B, DENG D D, WU Q, et al.Collaborative optimization of distributed energy network based on electricity and heat interchanges[J]. Proceedings of the CSEE, 2018, 38(14): 4023-4034, 4308.
[9] 陈新, 任洪波, 吴琼, 等. 全可再生能源多能互补系统配置及性能探索[J]. 工程热物理学报, 2022, 247.
CHEN X, REN H B, WU Q, et al.Configuration and performance exploration of ali renewable energy multi energy complementary system[J]. Journal of engineering thermophysics, 2022, 247.
[10] 潘华, 梁作放, 肖雨涵, 等. 多场景下区域综合能源系统的优化运行[J]. 太阳能学报, 2021, 42(1): 484-492.
PAN H, LIANG Z F, XIAO Y H, et al.Optimal operation of regional integrated energy system under multiple scenes[J]. Acta energiae solaris sinica, 2021, 42(1): 484-492.
[11] 祝荣, 任永峰, 孟庆天, 等. 基于合作博弈的综合能源系统电-热-气协同优化运行策略[J]. 太阳能学报, 2022, 43(4): 20-29.
ZHU R, REN Y F, MENG Q T, et al.Electricity-heat-gas cooperative optimal operation strategy of integrated energy system based on cooperative game[J]. Acta energiae solaris sinica, 2022, 43(4): 20-29.
[12] 刘艳峰, 刘正学, 罗西, 等. 基于柔性负荷的孤立多能互补建筑能源系统优化设计[J]. 太阳能学报, 2022, 43(6): 24-32.
LIU Y F, LIU Z X, LUO X, et al.Design of isolated multi-energy complementary building energy system based on flexible load[J]. Acta energiae solaris sinica, 2022, 43(6): 24-32.
[13] 浙江省电力条例[N]. 浙江日报, 2022-10-11(6).
Zhejiang Province Electricity Regulations[N]. Zhejiang daily, 2022-10-11(6).
[14] 国家发展改革委. 《关于加快建立统一规范的碳排放统计核算体系实施方案》[EB/OL].[2022-04-22]. https://www.ndrc.gov.cn/xwdt/tzgg/202208/t20220819_1333233_ext.html.
National Development and Reform Commission. On accelerating the establishment of a unified and standardized carbon emissions statistics and accounting system implementation plan[EB/OL].[2022-04-22]. https://www.ndrc.gov.cn/xwdt/tzgg/202208/t20220819_1333233_ext.html.
[15] CUÉLLAR-FRANCA R M, AZAPAGIC A. Environmental impacts of the UK residential sector: life cycle assessment of houses[J]. Building and environment, 2012, 54: 86-99.
[16] JAFARY NASAB T, MONAVARI S M, JOZI S A, et al.Assessment of carbon footprint in the construction phase of high-rise constructions in Tehran[J]. International journal of environmental science and technology, 2020, 17(6): 3153-3164.
[17] CHAU C K, LEUNG T M, NG W Y.A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings[J]. Applied energy, 2015, 143: 395-413.
[18] 董凯红. 南方大型综合体建筑全寿命期碳排放计算研究[D]. 广州: 华南理工大学, 2018.
DONG K H.Study on carbon emission calculation from the life-cycle of large-scale complex building in the south[D]. Guangzhou: South China University of Technology, 2018.
[19] 陈露. 住宅建筑全生命周期碳排放测算及减排策略研究: 以沈阳市丽水新城项目为例[D]. 沈阳: 沈阳建筑大学.
CHEN L.Research on carbon emission calculation and emission reduction strategy of residential buildings in the whole life cycle[D]. Shenyang: Shenyang Jianzhu University.
[20] 陈海军, 陈新, 任洪波, 等. 基于生物质能的全可再生能源多能互补耦合供能系统及其调度策略优化模型: CN115513992A[P].2022-12-23.
CHEN H J, CHEN X, REN H B, et al. A fully renewable energy multi energy complementary coupling energy supply system based on biomass energy and its scheduling strategy optimization model: CN115513992A[P].2022-12-23.
[21] 郭敏晓. 风力、光伏及生物质发电的生命周期CO2排放核算[D]. 北京: 清华大学, 2012.
GUO M X.The life cycle accounting of CO2 emissions for wind, PV and biomass power generation in China[D]. Beijing: Tsinghua University, 2012
[22] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventory[R]. 2019.

基金

国家重点研发计划(2018YFB1502900)

PDF(1969 KB)

Accesses

Citation

Detail

段落导航
相关文章

/