不同稳定度下大气边界层模拟及实测数据验证研究

张子良, 郭乃志, 易侃, 文仁强, 石可重

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 112-117.

PDF(2324 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2324 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 112-117. DOI: 10.19912/j.0254-0096.tynxb.2023-0005

不同稳定度下大气边界层模拟及实测数据验证研究

  • 张子良1, 郭乃志2, 易侃1, 文仁强1, 石可重2
作者信息 +

SIMULATION OF ATMOSPHERIC BOUNDARY LAYER UNDER DIFFERENT STABILITIES AND VERIFICATION OF MEASURED DATA

  • Zhang Ziliang1, Guo Naizhi2, Yi Kan1, Wen Renqiang1, Shi Kezhong2
Author information +
文章历史 +

摘要

大气边界层的模拟是风电场风能资源评估的核心环节。然而,现有大气边界层模拟研究中广泛存在对实际气象因素考虑欠缺,从而导致模拟准确性不足的问题。为此,该文结合实际测风数据与开源计算流体力学软件开发了一套风电场大气边界层模拟方法。该方法通过对测风数据的分析处理,将地表粗糙度以及大气稳定度这两种关键因素纳入大气边界层的模拟之中,使其能更加贴近实际地模拟边界层内的流场状态。使用该方法在一个真实案例下进行模拟,并与测风塔实测数据进行对比以验证开发方法的可靠性。结果表明,开发方法在不同的大气稳定度下的模拟结果与实测数据吻合程度较高,相比于现有商业软件WT的计算精度有较大幅度的提升,具有一定的工程实用价值。

Abstract

Simulation of the atmospheric boundary layer is the key of wind resource assessment. However, there is a widespread lack of consideration of actual meteorological factors in the existing atmospheric boundary layer simulation research, which leads to the problem of insufficient accuracy. To this end, this paper develops a set of atmospheric boundary layer simulation methods for wind farms by combining actual wind measurement data and open-source computational fluid dynamics software. By analyzing and processing wind measurement data, the method incorporates two key factors, surface roughness and atmospheric stability, into the simulation of the atmospheric boundary layer, so that it can simulate the flow field in the bound-ary layer more realistically. The method is used to simulate a real case and compare it with the measured data of the wind tower to verify the reliability of the developed method. The results show that the simulation results of the developed method under different atmospheric stability levels are in good agreement with the measured data. Compared with the existing commercial software, the calculation accuracy is greatly improved, and it has certain engineering practical value.

关键词

风电场 / 大气边界层 / 数值模拟 / 测风塔 / 地表粗糙度 / 大气稳定度

Key words

wind farm / atmospheric boundary layer / numerical simulation / wind tower / surface roughness / atmospheric stability

引用本文

导出引用
张子良, 郭乃志, 易侃, 文仁强, 石可重. 不同稳定度下大气边界层模拟及实测数据验证研究[J]. 太阳能学报. 2024, 45(5): 112-117 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0005
Zhang Ziliang, Guo Naizhi, Yi Kan, Wen Renqiang, Shi Kezhong. SIMULATION OF ATMOSPHERIC BOUNDARY LAYER UNDER DIFFERENT STABILITIES AND VERIFICATION OF MEASURED DATA[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 112-117 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0005
中图分类号: TK89   

参考文献

[1] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771.
CHI Y N, LIANG W, ZHANG Z K, et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771.
[2] GUO N Z, SHI K Z, LI B, et al.A physics-inspired neural network model for short-term wind power prediction considering wake effects[J]. Energy, 2022, 261: 125208.
[3] KHEIRABADI A C, NAGAMUNE R.A quantitative review of wind farm control with the objective of wind farm power maximization[J]. Journal of wind engineering and industrial aerodynamics, 2019, 192: 45-73.
[4] PORTÉ-AGEL F, BASTANKHAH M, SHAMSODDIN S.Wind-turbine and wind-farm flows: a review[J]. Boundary-layer meteorology, 2020, 174(1): 1-59.
[5] PEÑA A, RATHMANN O. Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient[J]. Wind energy, 2014, 17(8): 1269-1285.
[6] 程瑜. 复杂大气环境下风电机组尾流精细化数值模拟与模化研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020.
CHENG Y.High-fidelity numerical simulation and analytical modeling of wind turbine wakes in complex atmospheric conditions[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2020.
[7] VOLLMER L, STEINFELD G, HEINEMANN D, et al.Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study[J]. Wind energy science, 2016, 1(2): 129-141.
[8] CHENG Y, ZHANG M M, ZHANG Z L, et al.A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory[J]. Applied energy, 2019, 239: 96-106.
[9] 张新骞, 陈龙泉, 张俊芳. 福建沿海区域大气稳定度分类方法对比研究[J]. 气象与环境学报, 2021, 37(5): 41-48.
ZHANG X Q, CHEN L Q, ZHANG J F.Comparison of classification methods on atmospheric stability over the coastal areas of Fujian Province[J]. Journal of meteorology and environment, 2021, 37(5): 41-48.
[10] 范绍佳, 林文实, 苏雄晖, 等. 理查逊数Ri在沿海近地层大气稳定度分类中的应用[J]. 热带气象学报, 1999, 15(4): 370-373, 34.
FAN S J, LIN W S, SU X H, et al.Study on the application of Richardson number’s stability classifying schemes of the surfacelayer over coastal region[J]. Journal of tropical meteorology, 1999, 15(4): 370-373, 34.
[11] VIJAYAKUMAR G, BRASSEUR J, LAVELY A, et al. Considerations in coupling LES of the atmosphere to CFD around wind turbines[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee, 2012: AIAA2012-817.
[12] 刘洪佑. 大气表面层中大尺度湍流结构的三维形态特征及表征[D]. 兰州: 兰州大学, 2017.
LIU H Y.Features and characterizations of large-scale three-dimensional structures in the atmospheric surface layer[D]. Lanzhou: Lanzhou University, 2017.

基金

中国长江三峡集团有限公司科研项目(202103506)

PDF(2324 KB)

Accesses

Citation

Detail

段落导航
相关文章

/