基于时间戳特征提取和CatBoost-LSTM模型的光伏短期发电功率预测

徐恒山, 莫汝乔, 薛飞, 秦子健, 潘鹏程

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 565-575.

PDF(3206 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3206 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 565-575. DOI: 10.19912/j.0254-0096.tynxb.2023-0007

基于时间戳特征提取和CatBoost-LSTM模型的光伏短期发电功率预测

  • 徐恒山1, 莫汝乔1, 薛飞2, 秦子健3, 潘鹏程1
作者信息 +

SHORT-TERM PHOTOVOLTAIC POWER PREDICTION BASED ON TIMESTAMP FEATURE EXTRATION AND CatBoost-LSTM MODEL

  • Xu Hengshan1, Mo Ruqiao1, Xue Fei2, Qin Zijian3, Pan Pengcheng1
Author information +
文章历史 +

摘要

为解决预测模型输入特征维度不足以及单一模型预测精度不高而导致的短期功率预测效果较差的问题,提出一种对时间戳进行特征提取(FE)的CatBoost和长短期记忆(LSTM)神经网络组合的光伏短期发电功率预测模型。首先,利用信息熵加权的方式对传统灰色关联分析进行改进,并采用改进方法对辐照度、温度、降雨量等气象特征与发电功率特征进行关联性分析,选择关键特征作为输入特征;然后,从时间戳和功率特征中提取年、月、日、时、分、秒、时间戳-功率等新时序特征;在此基础上,将关键气象特征与提取的新时序特征用于组合模型训练;最后,利用光伏电站的真实运行数据对所提方法和组合模型进行算例分析。结果表明:提取的新时序特征和组合模型均有助于提高预测精度,在非晴天工况下组合模型的预测误差较单一模型可降低12~23个百分点,且与其他组合模型相比具有更高的预测精度。

Abstract

To solve the problem that the short-term power prediction effect is poor due to the insufficient input feature dimensions of the prediction model and the low prediction accuracy of a single model, a short-term prediction model of photovoltaic power generation combining with timestamp feature extraction and based on CatBoost and long short-term memory (LSTM) neural network is proposed. Firstly, the traditional grey correlation analysis is improved by using the information entropy weighting, and the improved method is used to analyze the correlation between the meteorological features such as irradiance, temperature, rainfall and power, and select the key features as the input features; Then, new temporal features such as year, month, day, hour, minute, second, timestamp-power are extracted from timestamp and power; On this basis, key meteorological features and extracted new temporal features are used for combined model training; Finally, an example analysis was conducted on the proposed method and combination model using real operating data of photovoltaic power plants. The results show that both the extracted new time series feature and the combined model can help improve the prediction accuracy. Under the non-sunny conditions, the prediction error of the combined model can be reduced by about 12%-23% compared with the single model, and it has higher prediction accuracy compared with other combined models.

关键词

光伏发电 / 特征提取 / 预测 / 长短期记忆神经网络 / 时间戳 / 灰色关联分析

Key words

PV power / feature extraction / prediction / long short-term memory / timestamp / grey correlation analysis

引用本文

导出引用
徐恒山, 莫汝乔, 薛飞, 秦子健, 潘鹏程. 基于时间戳特征提取和CatBoost-LSTM模型的光伏短期发电功率预测[J]. 太阳能学报. 2024, 45(5): 565-575 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0007
Xu Hengshan, Mo Ruqiao, Xue Fei, Qin Zijian, Pan Pengcheng. SHORT-TERM PHOTOVOLTAIC POWER PREDICTION BASED ON TIMESTAMP FEATURE EXTRATION AND CatBoost-LSTM MODEL[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 565-575 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0007
中图分类号: TM615   

参考文献

[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI H, LIU D, YAO D Y.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[2] 杨国华, 张鸿皓, 郑豪丰, 等. 基于相似日聚类和IHGWO-WNN-AdaBoost模型的短期光伏功率预测[J]. 高电压技术, 2021, 47(4): 1185-1194.
YANG G H, ZHANG H H, ZHENG H F, et al.Short-term photovoltaic power forecasting based on similar weather clustering and IHGWO-WNN-AdaBoost model[J]. High voltage engineering, 2021, 47(4): 1185-1194.
[3] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[4] 黄雨薇, 彭道刚, 姚峻, 等. 基于SSA和K均值的TD-BP神经网络超短期光伏功率预测[J]. 太阳能学报, 2021, 42(4): 229-238.
HUANG Y W, PENG D G, YAO J, et al.Ultra-short-term photovoltaic power forecast of TD-BP neural network based on SSA and K-means[J]. Acta energiae solaris sinica, 2021, 42(4): 229-238.
[5] 吴春华, 董阿龙, 李智华, 等. 基于图相似日和PSO-XGBoost的光伏功率预测[J]. 高电压技术, 2022, 48(8): 3250-3259.
WU C H, DONG A L, LI Z H, et al.Photovoltaic power prediction based on graph similarity day and PSO-XGBoost[J]. High voltage engineering, 2022, 48(8): 3250-3259.
[6] 张雨金, 杨凌帆, 葛双冶, 等. 基于Kmeans-SVM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2018, 46(21): 118-124.
ZHANG Y J, YANG L F, GE S Y, et al.Short-term photovoltaic power forecasting based on Kmeans algorithm and support vector machine[J]. Power system protection and control, 2018, 46(21): 118-124.
[7] 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8): 3027-3048.
ZHU Q F, LI J T, QIAO J, et al.Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8): 3027-3048.
[8] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.
[9] 吉锌格, 李慧, 叶林, 等. 基于波动特性挖掘的短期光伏功率预测[J]. 太阳能学报, 2022, 43(5):146-155.
JI X G, LI H, YE L, et al.Short-term photovoltaic power forecasting based on fluctuation characteristics mining[J]. Acta energiae solaris sinica, 2022, 43(5): 146-155.
[10] 闫钇汛, 王丽婕, 郭洪武, 等. 基于多特征分析和提取的短期光伏功率预测[J]. 高电压技术, 2022, 48(9): 3734-3743.
YAN Y X, WANG L J, GUO H W, et al.Short-term photovoltaic power prediction based on multi-feature analysis and extraction[J]. High voltage engineering, 2022, 48(9): 3734-3743.
[11] 陈海鹏, 周越豪, 王趁录, 等. 基于改进的CNN-LSTM短期风功率预测的系统旋转备用经济性分析[J]. 高电压技术, 2022, 48(2): 439-448.
CHEN H P, ZHOU Y H, WANG C L, et al.Economic analysis of system spinning reserve based on improved CNN-LSTM short term wind power prediction[J]. High voltage engineering, 2022, 48(2): 439-448.
[12] 高阳, 张碧玲, 毛京丽, 等. 基于机器学习的自适应光伏超短期出力预测模型[J]. 电网技术, 2015, 39(2): 307-311.
GAO Y, ZHANG B L, MAO J L, et al.Machine learning-based adaptive very-short-term forecast model for photovoltaic power[J]. Power system technology, 2015, 39(2): 307-311.
[13] 张群, 唐振浩, 王恭, 等. 基于长短时记忆网络的超短期风功率预测模型[J]. 太阳能学报, 2021, 42(10): 275-281.
ZHANG Q, TANG Z H, WANG G, et al.Ultra-short-term wind power prediction model based on long and short term memory network[J]. Acta energiae solaris sinica, 2021, 42(10): 275-281.
[14] 吉锌格, 李慧, 刘思嘉, 等. 基于MIE-LSTM的短期光伏功率预测[J]. 电力系统保护与控制, 2020, 48(7): 50-57.
JI X G, LI H, LIU S J, et al.Short-term photovoltaic power forecasting based on MIE-LSTM[J]. Power system protection and control, 2020, 48(7): 50-57.
[15] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[16] 史凯钰, 张东霞, 韩肖清, 等. 基于LSTM与迁移学习的光伏发电功率预测数字孪生模型[J]. 电网技术, 2022, 46(4): 1363-1372.
SHI K Y, ZHANG D X, HAN X Q, et al.Digital twin model of photovoltaic power generation prediction based on LSTM and transfer learning[J]. Power system technology, 2022, 46(4): 1363-1372.
[17] 余光正, 陆柳, 汤波, 等. 基于云图特征提取的改进混合神经网络超短期光伏功率预测方法[J]. 中国电机工程学报, 2021, 41(20): 6989-7003.
YU G Z, LU L, TANG B, et al.An Improved hybrid neural network ultra-short-term photovoltaic power forecasting method based on cloud image feature extraction[J]. Proceedings of the CSEE, 2021, 41(20): 6989-7003.
[18] SI Z Y, YANG M, YU Y X, et al.Photovoltaic power forecast based on satellite images considering effects of solar position[J]. Applied energy, 2021, 302: 117514.
[19] 张淑清, 杨振宁, 姜安琦, 等. 基于EN-SKPCA降维和FPA优化LSTMNN的短期风电功率预测[J]. 太阳能学报, 2022, 43(6): 204-211.
ZHANG S Q, YANG Z N, JIANG A Q, et al.Short term wind power prediction based on EN-SKPCA dimensionality reduction and FPA optimizing LSTMNN[J]. Acta energiae solaris sinica, 2022, 43(6): 204-211.
[20] 殷豪, 张铮, 丁伟锋, 等. 基于生成对抗网络和LSTM-CSO的少样本光伏功率短期预测[J]. 高电压技术, 2022, 48(11): 4342-4351.
YIN H, ZHANG Z, DING W F, et al.Short term prediction of small sample photovoltaic power based on generative adversarial network and LSTM-CSO[J]. High voltage engineering, 2022, 48(11): 4342-4351.
[21] 时珉, 许可, 王珏, 等. 基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测[J]. 电工技术学报, 2021, 36(11): 2298-2305.
SHI M, XU K, WANG J, et al.Short-term photovoltaic power forecast based on grey relational analysis and GeoMAN model[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2298-2305.
[22] 王雁凌, 吴梦凯, 周子青, 等. 基于改进灰色关联度的电力负荷影响因素量化分析模型[J]. 电网技术, 2017, 41(6): 1772-1778.
WANG Y L, WU M K, ZHOU Z Q, et al.Quantitative analysis model of power load influencing factors based on improved grey relational degree[J]. Power system technology, 2017, 41(6): 1772-1778.
[23] 罗毅, 李昱龙. 基于熵权法和灰色关联分析法的输电网规划方案综合决策[J]. 电网技术, 2013, 37(1): 77-81.
LUO Y, LI Y L.Comprehensive decision-making of transmission network planning based on entropy weight and grey relational analysis[J]. Power system technology, 2013, 37(1): 77-81.
[24] 陈纬楠, 胡志坚, 岳菁鹏, 等. 基于长短期记忆网络和LightGBM组合模型的短期负荷预测[J]. 电力系统自动化, 2021, 45(4): 91-97.
CHEN W N, HU Z J, YUE J P, et al.Short-term load prediction based on combined model of long short-term memory network and light gradient boosting machine[J]. Automation of electric power systems, 2021, 45(4): 91-97.
[25] The Desert Knowledge Australia Solar Centre (DKASC). The Alice Spring PV Plant.[DB/OL].[2023-01-03]. https://dkasolarcentre.com.au/download?location=alice-springs.
[26] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBOOST-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[27] AGGA A, ABBOU A, LABBADI M, et al.CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production[J]. Electric power systems research, 2022, 208:107908.
[28] ZHANG H C, ZHU T T.Stacking model for photovoltaic-power-generation prediction[J]. Sustainability, 2022, 14(9): 5669.

基金

国家自然科学基金(52067001)

PDF(3206 KB)

Accesses

Citation

Detail

段落导航
相关文章

/