时空特性下基于图卷积神经网络的风电集群功率短期预测方法

乔宽龙, 董存, 车建峰, 蒋建东, 王勃

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 95-103.

PDF(2454 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2454 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 95-103. DOI: 10.19912/j.0254-0096.tynxb.2023-0009

时空特性下基于图卷积神经网络的风电集群功率短期预测方法

  • 乔宽龙1,2, 董存1,3, 车建峰2, 蒋建东1, 王勃2
作者信息 +

SHORT-TERM PREDICTION METHOD OF WIND POWER CLUSTERS BASED ON GRAPH CONVOLUTION NEURAL NETWORK UNDER SPITIO-TEMPORAL CHARACTERISTICS

  • Qiao Kuanlong1,2, Dong Cun1,3, Che Jianfeng2, Jiang Jiandong1, Wang Bo2
Author information +
文章历史 +

摘要

为解决传统风电集群功率预测方法忽略了不同位置点气象关联特性及单场预测无法快速得到风电集群整体功率的问题,并充分考虑到风电集群耦合的复杂时空特性,提出一种融合注意力机制的时空图卷积神经网络的风电集群功率短期预测方法。首先,计算区域内风电场站历史功率之间的互信息,提取特征邻接矩阵,并结合影响集群功率的气象特征变量转化为气象图数据。其次,构建图卷积神经网络(GCN)模型,从非欧式空间提取气象图节点关联特征。并馈入融合注意力机制(AM)的门控循环单元网络(GRU)增强时序特征中关键信息对风电集群功率的贡献程度。最后,基于中国西部某省风电集群的实际运行数据,验证所提方法的先进性和适应性。

Abstract

In order to solve the problems that the traditional wind power clusters prediction methods ignore the meteorological correlation characteristics of different locations and the single site prediction cannot quickly obtain the overall power of the wind power clusters, and fully consider the complex spatio-temporal characteristics of wind power clusters coupling, a short-term prediction method of wind power clusters based on attention mechanism and spatio-temporal graph convolution neural network is proposed. Initially, the mutual information between the historical power of wind farms in the region is calculated, the feature adjacency matrix is extracted, and the meteorological characteristic variables that affect the cluster power, which are converted into meteorological graph data. Furthermore, a graph convolution network (GCN) model is constructed to extract the correlation characteristics of meteorological graph nodes from non-European space. The gated recurrent unit (GRU) network, which incorporates the attention mechanism (AM), is fed to enhance the contribution of key information in the temporal features to the power of wind power clusters. Finally, the progressiveness and adaptability of the proposed method is verified based on the actual operation data of the wind power cluster in a certain province in Western China.

关键词

风电功率 / 图数据结构 / 深度学习 / 时空特性 / 图卷积神经网络 / 注意力机制

Key words

wind power / graph data structures / deep learning / spatio-temporal characteristics / graph convolutional neural network / attention mechanism

引用本文

导出引用
乔宽龙, 董存, 车建峰, 蒋建东, 王勃. 时空特性下基于图卷积神经网络的风电集群功率短期预测方法[J]. 太阳能学报. 2024, 45(5): 95-103 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0009
Qiao Kuanlong, Dong Cun, Che Jianfeng, Jiang Jiandong, Wang Bo. SHORT-TERM PREDICTION METHOD OF WIND POWER CLUSTERS BASED ON GRAPH CONVOLUTION NEURAL NETWORK UNDER SPITIO-TEMPORAL CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 95-103 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0009
中图分类号: TM614   

参考文献

[1] 国家能源局. 国家能源局发布2022年全国电力工业统计数据[EB/OL]. (2023-01-18). http://www.nea.gov.cn/2023-01/18/c_1310691509.htm.
National Energy Administration. National energy administration releases2022 national electric power industry statistical data[EB/OL]. (2023-01-18). http://www.nea.gov.cn/2023-01/18/c_1310691509.htm.
[2] 王勃, 刘纯, 冯双磊, 等. 基于集群划分的短期风电功率预测方法[J]. 高电压技术, 2018, 44(4): 1254-1260.
WANG B, LIU C, FENG S L, et al.Prediction method for short-term wind power based on wind farm clusters[J]. High voltage engineering, 2018, 44(4): 1254-1260.
[3] 涂青宇, 苗世洪, 林毓军, 等. 基于动态R藤Copula模型的区域风电集群超短期功率区间预测方法[J]. 高电压技术, 2022, 48(2): 456-470.
TU Q Y, MIAO S H, LIN Y J, et al.Ultra-short-term interval forecasting method for regional wind farms based on dynamic R-vine Copula model[J]. High voltage engineering, 2022, 48(2): 456-470.
[4] 王尤嘉, 鲁宗相, 乔颖, 等. 基于特征聚类的区域风电短期功率统计升尺度预测[J]. 电网技术, 2017, 41(5): 1383-1389.
WANG Y J, LU Z X, QIAO Y, et al.Short-term regional wind power statistical upscaling forecasting based on feature clustering[J]. Power system technology, 2017, 41(5): 1383-1389.
[5] 李聪, 彭小圣, 王皓怀, 等. 基于SDAE深度学习与多重集成的风电集群短期功率预测[J]. 高电压技术, 2022, 48(2): 504-512.
LI C, PENG X S, WANG H H, et al.Short-term power prediction of wind power cluster based on SDAE deep learning and multiple integration[J]. High voltage engineering, 2022, 48(2): 504-512.
[6] 杨国清, 刘世林, 王德意, 等. 基于Attention-GRU风速修正和Stacking的短期风电功率预测[J]. 太阳能学报, 2022, 43(12): 273-281.
YANG G Q, LIU S L, WANG D Y, et al.Short-term wind power forecasting based on Attention-GRU wind speed correction and Stacking[J]. Acta energiae solaris sinica, 2022, 43(12): 273-281.
[7] PENG X S, CHENG K, LANG J X, et al.Short-term wind power prediction for wind farm clusters based on SFFS feature selection and BLSTM deep learning[J]. Energies, 2021, 14(7): 1894.
[8] 周家慷. 基于深度学习的风电集群短期功率预测方法研究[D]. 北京: 华北电力大学, 2021.
ZHOU J K.Research on short-term power forecasting method of wind power cluster based on deep learning[D]. Beijing: North China Electric Power University, 2021.
[9] CHEN G, SHAN J N, LI D Y, et al.Research on wind power prediction method based on convolutional neural network and genetic algorithm[C]//2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia). Chengdu, China, 2019: 3573-3578.
[10] 殷豪, 欧祖宏, 陈德, 等. 基于二次模式分解和级联式深度学习的超短期风电功率预测[J]. 电网技术, 2020, 44(2): 445-453.
YIN H, OU Z H, CHEN D, et al.Ultra-short-term wind power prediction based on two-layer mode decomposition and cascaded deep learning[J]. Power system technology, 2020, 44(2): 445-453.
[11] 张淑清, 杨振宁, 姜安琦, 等. 基于EN-SKPCA降维和FPA优化LSTMNN的短期风电功率预测[J]. 太阳能学报, 2022, 43(6): 204-211.
ZHANG S Q, YANG Z N, JIANG A Q, et al.Short term wind power prediction based on EN-SKPCA dimensionality reduction and FPA optimizing LSTMNN[J]. Acta energiae solaris sinica, 2022, 43(6): 204-211.
[12] 杨茂, 彭天, 苏欣. 基于预测信息二维坐标动态划分的风电集群功率超短期预测[J]. 中国电机工程学报, 2022, 42(24): 8854-8864.
YANG M, PENG T, SU X.Ultra-short term wind power prediction based on two-dimensional coordinate dynamic division of prediction information[J]. Proceedings of the CSEE, 2022, 42(24): 8854-8864.
[13] 石立贤, 金怀平, 杨彪, 等. 基于局部学习和多目标优化的选择性异质集成超短期风电功率预测方法[J]. 电网技术, 2022, 46(2): 568-577.
SHI L X, JIN H P, YANG B, et al.Selective heterogeneous ensemble for ultra-short-term wind power forecasting based on local learning and multi-objective optimization[J]. Power system technology, 2022, 46(2): 568-577.
[14] 张浩田, 温蜜, 李晋国, 等. 数据驱动的时间注意力卷积风电功率预测模型[J]. 太阳能学报, 2022, 43(10): 167-176.
ZHANG H T, WEN M, LI J G, et al.Data driven time attention convolution wind power prediction model[J]. Acta energiae solaris sinica, 2022, 43(10): 167-176.
[15] ZHANG G, LIU H C, ZHANG J B, et al.Wind power prediction based on variational mode decomposition multi-frequency combinations[J]. Journal of modern power systems and clean energy, 2019, 7(2): 281-288.
[16] AN J Q, YIN F, WU M, et al.Multisource wind speed fusion method for short-term wind power prediction[J]. IEEE transactions on industrial informatics, 2021, 17(9): 5927-5937.
[17] KHODAYAR M, WANG J H.Spatio-temporal graph deep neural network for short-term wind speed forecasting[J]. IEEE transactions on sustainable energy, 2019, 10(2): 670-681.
[18] 綦方中, 卓可翔, 曹柬. 基于多层语义融合注意力机制的短期风电功率概率密度预测方法[J]. 太阳能学报, 2022, 43(11): 140-147.
QI F Z, ZHUO K X, CAO J.Short-term wind power probability density prediction method based on multi-level semantic attention mechanism[J]. Acta energiae solaris sinica, 2022, 43(11): 140-147.
[19] BAI J D, ZHU J W, SONG Y J, et al.A3T-GCN: attention temporal graph convolutional network for traffic forecasting[J]. ISPRS international journal of geo-information, 2021, 10(7): 485.
[20] 叶林, 李奕霖, 裴铭, 等. 寒潮天气小样本条件下的短期风电功率组合预测[J]. 中国电机工程学报, 2023, 43(2): 543-555.
YE L, LI Y L, PEI M, et al.Combined approach for short-term wind power forecasting under cold weather with small sample[J]. Proceedings of the CSEE, 2023, 43(2): 543-555.
[21] 王晓东, 栗杉杉, 刘颖明, 等. 基于特征变权的超短期风电功率预测[J]. 太阳能学报, 2023, 44(2): 52-58.
WANG X D, LI S S, LIU Y M, et al.Ultra-short-term wind power prediction based on variable feature weight[J]. Acta energiae solaris sinica, 2023, 44(2): 52-58.
[22] 杨茂, 张罗宾. 基于数据驱动的超短期风电功率预测综述[J]. 电力系统保护与控制, 2019, 47(13): 171-186.
YANG M, ZHANG L B.Review on ultra-short term wind power forecasting based on data-driven approach[J]. Power system protection and control, 2019, 47(13): 171-186.

基金

国家自然科学基金(52177121)

PDF(2454 KB)

Accesses

Citation

Detail

段落导航
相关文章

/