基于改进粒子群区间二型模糊神经网络的MPPT控制研究

李凯, 姜新正

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 556-564.

PDF(2518 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2518 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 556-564. DOI: 10.19912/j.0254-0096.tynxb.2023-0011

基于改进粒子群区间二型模糊神经网络的MPPT控制研究

  • 李凯1, 姜新正2
作者信息 +

MPPT CONTROL BASED ON IMPROVED PARTICLE SWARM INTERVAL

  • Li Kai1, Jiang Xinzheng2
Author information +
文章历史 +

摘要

针对太阳能发电单元最大功率点控制(MPPT)在复杂工况条件下存在的振荡、跟踪耗时长、精度较低的问题,提出一种基于改进区间二型模糊神经网络的预测控制模型。首先将减法聚类与区间二型模糊均值聚类算法相结合,辨识模型前件模糊规则层结构,计算得到聚类中心;其次,基于自导式粒子群算法优化后件权重层权值参数,进而提升网络全局寻优能力;最后,通过与TS模糊神经网络模型、基于反向传播算法的区间二型模糊神经网络模型进行仿真对比,验证所提模型在不同工况下对最大功率点追踪的快速性与精确性。

Abstract

In order to solve the problems of maximum power point control, propose a predictive control model based on interval type two fuzzy neural network, such as oscillation, long tracking time and low accuracy under complex operating conditions. Firstly, the Fuzzy rule layer structure of interval type two fuzzy neural network is identified and the cluster center is calculated by combining subtractive clustering and interval two type fuzzy mean clustering algorithm; Secondly, self guided particle swarm optimization is used to optimize the weight layer of the subsequent layer to improve the global optimization capability of the network. Finally, through simulation comparison with TS fuzzy neural network model and interval type Ⅱ fuzzy neural network model based on back propagation algorithm, the rapidity and accuracy of the proposed model for maximum power point tracking under different working conditions are verified.

关键词

光伏发电 / 最大功率点跟踪 / 预测控制 / 模糊神经网络 / 模糊聚类 / 粒子群算法

Key words

PV power / MPPT / predictive control / fuzzy neural network / fuzzy clustering / particle swarm optimization algorithm

引用本文

导出引用
李凯, 姜新正. 基于改进粒子群区间二型模糊神经网络的MPPT控制研究[J]. 太阳能学报. 2024, 45(5): 556-564 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0011
Li Kai, Jiang Xinzheng. MPPT CONTROL BASED ON IMPROVED PARTICLE SWARM INTERVAL[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 556-564 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0011
中图分类号: TM743   

参考文献

[1] 臧健康, 卫东, 魏缪宇. 基于多峰状态的光伏组串参数求解与波峰最大功率点计算方法[J]. 太阳能学报, 2020, 41(11): 86-94.
ZANG J K, WEI D, WEI M Y.Multi-paek state-based photovolatic string parmater extraction and global maximum power point calculation method[J]. Acta energiae solaris sinica, 2020, 41(11): 86-94.
[2] 徐岩, 靳伟佳, 朱晓荣. 基于遗传粒子群算法的光伏并网逆变器参数辨识[J]. 太阳能学报, 2021, 42(7): 103-109.
XU Y, JIN W J, ZHU X R.Parameter identification of photovoltaic grid-connected inverter based on GAPSO[J]. Acta energiae solaris sinica, 2021, 42(7): 103-109.
[3] KUMAR M, SHIVA KRISHNA RAO K D V. Modelling and parameter estimation of solar cell using genetic algorithm[C]//2019 International Conference on Intelligent Computing and Control Systems (ICCS). Madurai, India, 2020: 383-387.
[4] SUBUDHI B, PRADHAN R.Bacterial foraging optimization approach to parameter extraction of a photovoltaic module[J]. IEEE transactions on sustainable energy, 2018, 9(1): 381-389.
[5] MUTTILLO M, MUTTILLO V, DE RUBEIS T.Towards the design of microcontroller based embedded sensory systems with a five-parameter single diode estimation method for photovoltaic panels[C]//2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT. Roma, Italy, 2020: 197-201.
[6] 梁智超, 李梦达, 郑旭彬, 等. 基于模糊和声搜索算法的光伏MPPT控制研究[J]. 电源技术, 2022, 46(3): 320-323.
LIANG Z C, LI M D, ZHENG X B, et al.Research on photovoltaic MPPT control based on fuzzy harmony search algorithm[J]. Chinese journal of power sources, 2022, 46(3): 320-323.
[7] 王亚锋, 安坤, 孟江. 基于RBF神经网络的迟滞非线性模型预测控制[J]. 电子测量技术, 2021, 44(23): 42-47.
WANG Y F, AN K, MENG J.Nonlinear model predictive control of hysteresis based on RBF neural network[J]. Electronic measurement technology, 2021, 44(23): 42-47.
[8] 张舵. 基于模糊理论的动力系统事件触发控制研究[D]. 成都: 电子科技大学, 2022.
ZHANG D.Research on event trigger control of dynamical systems based on fuzzy theory[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[9] 伍冬睿, 曾志刚, 莫红, 等. 区间二型模糊集和模糊系统: 综述与展望[J]. 自动化学报, 2020, 46(8): 1539-1556.
WU D R, ZENG Z G, MO H, et al.Interval type-2 fuzzy sets and systems: overview and outlook[J]. Acta automatica sinica, 2020, 46(8): 1539-1556.
[10] 郑高, 肖建, 蒋强, 等. 二型模糊系统理论与应用[J]. 合肥工业大学学报(自然科学版), 2009, 32(7): 966-971.
ZHENG G, XIAO J, JIANG Q, et al.Research on theory and application of type-2 fuzzy logic systems[J]. Journal of Hefei university of technology (natural science), 2009, 32(7): 966-971.
[11] 杨东海, 刘洋, 王毅, 等. 基于二进制蚁群模糊神经网络的光伏系统MPPT控制算法研究[J]. 电气工程学报, 2017, 12(6): 41-46.
YANG D H, LIU Y, WANG Y, et al.Research on MPPT control algorithm of photovoltaic system by binary ant colony algorithm and fuzzy neural network[J]. Journal of electrical engineering, 2017, 12(6): 41-46.
[12] 张严, 王亚君, 余佳琪. 基于神经网络-自适应模糊的光伏MPPT算法[J]. 国外电子测量技术, 2022, 41(4): 62-69.
ZHANG Y, WANG Y J, YU J Q.Photovoltaic MPPT algorithm based on ANN-adaptive FLC[J]. Foreign electronic measurement technology, 2022, 41(4): 62-69.
[13] 杨顺吉, 李庆生. 光伏模糊自适应最大功率点跟踪及并网研究[J]. 电力科学与工程, 2022, 38(6): 1-8.
YANG S J, LI Q S.Research on fuzzy adaptive photovoltaic MPPT and its grid connection[J]. Electric power science and engineering, 2022, 38(6): 1-8.
[14] 武迪, 许春雨, 郑丽君, 等. 基于β参数的光伏系统最大功率点跟踪算法研究[J]. 太阳能学报, 2020, 41(6): 234-241.
WU D, XU C Y, ZHENG L J, et al.Maximum power point tracking algorithm of photovoltaic system based on β-parameter[J]. Acta energiae solaris sinica, 2020, 41(6): 234-241.
[15] 马彬, 王双双, 陈海波. 基于区间二型模糊神经网络的垂直切换算法[J]. 电子学报, 2021, 49(5): 928-935.
MA B, WANG S S, CHEN H B.Vertical handover algorithm based on interval type-2 fuzzy neural network[J]. Acta electronica sinica, 2021, 49(5): 928-935.
[16] 杨威, 徐拥华, 杨永峰, 等. 机械臂的改进区间二型模糊神经网络控制[J]. 空间控制技术与应用, 2021, 47(1): 70-77.
YANG W, XU Y H, YANG Y F, et al.Improved interval Type2 fuzzy neural networks control of manipulator[J]. Aerospace control and application, 2021, 47(1): 70-77.
[17] 施建中, 梁绍华. 基于模糊聚类的二型模糊神经网络系统辨识[J]. 科学技术与工程, 2020, 20(4): 1454-1460.
SHI J Z, LIANG S H.Type 2 fuzzy neural network system identification based on fuzzy clustering[J]. Science technology and engineering, 2020, 20(4): 1454-1460.
[18] SHAHPARAST H, HAMZELOO S, SAFARI E.An incremental type-2 fuzzy classifier for stock trend prediction[J]. Expert systems with applications, 2023, 212: 118787.
[19] HESARIAN M S, TAVOOSI J.Evaluating the smoothness of the washed fabric after laundry with the washing machine based on a new type-2 fuzzy neural network[J]. Complexity, 2022, 2022: 1-9.
[20] MACIEL L, BALLINI R, GOMIDE F, et al.Forecasting cryptocurrencies prices using data driven level set fuzzy models[J]. Expert systems with applications, 2022, 210: 118387.
[21] CASTILLO O, CASTRO J R, PULIDO M, et al.Interval type-3 fuzzy aggregators for ensembles of neural networks in COVID-19 time series prediction[J]. Engineering applications of artificial intelligence, 2022, 114: 105110.
[22] 苏艺凡, 党建武, 王阳萍, 等. 改进的区间二型模糊聚类遥感影像变化检测[J]. 测绘通报, 2021(7): 44-51, 58.
SU Y F, DANG J W, WANG Y P, et al.Remote sensing image change detection based on improved interval type-2 fuzzy clustering[J]. Bulletin of surveying and mapping, 2021(7): 44-51, 58.

基金

2022广东省青年创新人才项目(2022KQNCX214)

PDF(2518 KB)

Accesses

Citation

Detail

段落导航
相关文章

/