基于小波包变换与深度学习的超短期光伏功率预测

刘源延, 孔小兵, 马乐乐, 刘向杰

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 537-546.

PDF(24118 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(24118 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 537-546. DOI: 10.19912/j.0254-0096.tynxb.2023-0033

基于小波包变换与深度学习的超短期光伏功率预测

  • 刘源延, 孔小兵, 马乐乐, 刘向杰
作者信息 +

ULTRA-SHORT-TERM PHOTOVOLTAIC POWER FORECASTING BASED ON WAVELET PACKET TRANSFORM AND DEEP LEARNING

  • Liu Yuanyan, Kong Xiaobing, Ma Lele, Liu Xiangjie
Author information +
文章历史 +

摘要

针对光伏功率序列的复杂多变特征,提出一种基于小波包变换(WPT)的门控循环单元(GRU)光伏功率组合预测方法。首先通过相关性分析挑选重要气象因子,并利用WPT将原始光伏功率序列分解为一组子序列;然后,提出一种基于莱维飞行天牛须搜索算法(LFBAS)的相似日选择方法,以选择相似于预测日的历史日作为输入数据集;最后,建立一组基于GRU网络的深度学习光伏功率预测模型,将每个子序列预测结果叠加得到光伏功率最终预测结果。仿真结果表明,该文所提出的预测方法在预测精度和计算效率方面具有显著优势。

Abstract

Considering the highly varying and complex features of photovoltaic power generation, this paper constitutes a hybrid Photovoltaic (PV) power forecasting (PVPF) method based on gated recurrent unit (GRU) combining with wavelet packet transform (WPT) algorithm. First, correlation analysis is used to select the main meteorological factors while wavelet packet decomposition is used to decompose the original PV power into a series of sub-signals. A similar day selection method based on levy-flight BAS algorithm is proposed to select historical days similar to the forecast day from the real-time massive data. Deep learning model for PVPF is established using a group of GRU networks. These GRU forecasting sub-signals are synthesized to form the final forecasting PV power. The simulation results verify that the proposed method shows obvious advantages in terms of both forecasting accuracy and computational efficiency.

关键词

光伏发电 / 功率预测 / 小波包变换 / 相似日 / 门控循环单元 / 天牛须搜索算法

Key words

PV power / power forecasting / wavelet packet transform / similar day / gated recurrent unit / beetle antennae search algorithm

引用本文

导出引用
刘源延, 孔小兵, 马乐乐, 刘向杰. 基于小波包变换与深度学习的超短期光伏功率预测[J]. 太阳能学报. 2024, 45(5): 537-546 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0033
Liu Yuanyan, Kong Xiaobing, Ma Lele, Liu Xiangjie. ULTRA-SHORT-TERM PHOTOVOLTAIC POWER FORECASTING BASED ON WAVELET PACKET TRANSFORM AND DEEP LEARNING[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 537-546 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0033
中图分类号: TM615   

参考文献

[1] 吉锌格, 李慧, 叶林, 等. 基于波动特性挖掘的短期光伏功率预测[J]. 太阳能学报, 2022, 43(5): 146-155.
JI X G, LI H, YE L, et al.Short-term photovoltaic power forecasting based on fluctuation characteristics mining[J]. Acta energiae solaris sinica, 2022, 43(5): 146-155.
[2] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[3] 王振浩, 王翀, 成龙, 等. 基于集合经验模态分解和深度学习的光伏功率组合预测[J]. 高电压技术, 2022, 48(10): 4133-4142.
WANG Z H, WANG C, CHENG L, et al.Photovoltaic power combined prediction based on ensemble empirical mode decomposition and deep learning[J]. High voltage engineering, 2022, 48(10): 4133-4142.
[4] LUO X, ZHANG D X, ZHU X.Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge[J]. Energy, 2021, 225: 120240.
[5] 刘国海, 孙文卿, 吴振飞, 等. 基于Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(2): 226-232.
LIU G H, SUN W Q, WU Z F, et al.Short-term photovoltaic power forecasting based on attention-GRU model[J]. Acta energiae solaris sinica, 2022, 43(2): 226-232.
[6] MONJOLY S, ANDRÉ M, CALIF R, et al.Hourly forecasting of global solar radiation based on multiscale decomposition methods: a hybrid approach[J]. Energy, 2017, 119: 288-298.
[7] 孟安波, 许炫淙, 陈嘉铭, 等. 基于强化学习和组合式深度学习模型的超短期光伏功率预测[J]. 电网技术, 2021, 45(12): 4721-4728.
MENG A B, XU X C, CHEN J M, et al.Ultra short term photovoltaic power prediction based on reinforcement learning and combined deep learning model[J]. Power system technology, 2021, 45(12): 4721-4728.
[8] 张飞, 张志伟, 万乐斐, 等. 基于EEMD-GRNN方法的光伏电站短期出力预测[J]. 太阳能学报, 2020, 41(12): 103-109.
ZHANG F, ZHANG Z W, WAN L F, et al.Short-term output prediction of photovoltaic power station based on EEMD-GRNN method[J]. Acta energiae solaris sinica, 2020, 41(12): 103-109.
[9] 杨丽薇, 高晓清, 蒋俊霞, 等. 基于小波变换与神经网络的光伏电站短期功率预测[J]. 太阳能学报, 2020, 41(7): 152-157.
YANG L W, GAO X Q, JIANG J X, et al.Short-term photovoltaic output power prediction based on wavelet transform and neural network[J]. Acta energiae solaris sinica, 2020, 41(7): 152-157.
[10] LI P T, ZHOU K L, LU X H, et al.A hybrid deep learning model for short-term PV power forecasting[J]. Applied energy, 2020, 259: 114216.
[11] ZHOU Y, ZHOU N R, GONG L H, et al.Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine[J]. Energy, 2020, 204: 117894.
[12] JALALI S M J, AHMADIAN S, KHODAYAR M, et al. Towards novel deep neuroevolution models: chaotic levy grasshopper optimization for short-term wind speed forecasting[J]. Engineering with computers, 2022, 38(3): 1787-1811.
[13] FU W L, FANG P, WANG K, et al.Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model[J]. Renewable energy, 2021, 179: 1122-1139.
[14] LIU X J, ZHANG H, KONG X B, et al.Wind speed forecasting using deep neural network with feature selection[J]. Neurocomputing, 2020, 397: 393-403.
[15] JIANG H, DONG Y, WANG J Z, et al.Intelligent optimization models based on hard-ridge penalty and RBF for forecasting global solar radiation[J]. Energy conversion and management, 2015, 95: 42-58.
[16] HUANG X Q, LI Q, TAI Y H, et al.Hybrid deep neural model for hourly solar irradiance forecasting[J]. Renewable energy, 2021, 171: 1041-1060.

基金

国家重点研发计划(2021YFE0190900); 国家自然科学基金(62073136; 61833011; 62203170)

PDF(24118 KB)

Accesses

Citation

Detail

段落导航
相关文章

/