光伏组件热斑效应智能化检测的综述及展望

王道累, 姚从荣, 李超, 王卫军, 秦宝星, 朱瑞

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 527-536.

PDF(2162 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2162 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 527-536. DOI: 10.19912/j.0254-0096.tynxb.2023-0042

光伏组件热斑效应智能化检测的综述及展望

  • 王道累1, 姚从荣1, 李超1, 王卫军2, 秦宝星3, 朱瑞1
作者信息 +

OVERVIEW AND PROSPECT OF INTELLIGENT DETECTION OF HOT SPOT EFFECT OF PHOTOVOLTAIC MODULES

  • Wang Daolei1, Yao Congrong1, Li Chao1, Wang Weijun2, Qin Baoxing3, Zhu Rui1
Author information +
文章历史 +

摘要

针对目前光伏组件热斑检测方式较为众多繁杂的问题,总结并系统剖析现存的国内外各种光伏组件传统及智能化的热斑检测方式,将深度学习算法运用于此的最新进展,并着重研究多位研究者对于将各种神经网络、注意力机制以及目标检测模型运用于热斑红外图像的检测上,如多尺度卷积神经网络、基于SpotFPN多尺度特征学习模块等。之后针对光伏组件热斑检测的智能化诊断技术进行实验对比,最后对当前问题展开探讨以及对未来该技术进展的展望。

Abstract

In view of the many and complicated problems in the current hot spot detection methods of photovoltaic modules, summarizes and systematically analyzes the existing traditional and intelligent hot spot detection methods for PV modules at home and abroad. And the latest progress of applying deep learning algorithms to them. Focusing on the application of various neural networks, attention mechanisms and target detection models to the detection of hot spot infrared images, such as multi-scale CNN, SpotFPN-based multi-scale feature learning modules etc. After that, experiments are conducted to compare the intelligent diagnostic techniques for hot spot detection of PV modules. Finally, the current issues are discussed and the future progress of the technology is expected.

关键词

光伏组件 / 太阳能发电 / 红外图像 / 深度学习 / 热斑 / 智能化

Key words

PV modules / solar power generation / infrared imaging / deep learning / hot spot / intellectualization

引用本文

导出引用
王道累, 姚从荣, 李超, 王卫军, 秦宝星, 朱瑞. 光伏组件热斑效应智能化检测的综述及展望[J]. 太阳能学报. 2024, 45(5): 527-536 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0042
Wang Daolei, Yao Congrong, Li Chao, Wang Weijun, Qin Baoxing, Zhu Rui. OVERVIEW AND PROSPECT OF INTELLIGENT DETECTION OF HOT SPOT EFFECT OF PHOTOVOLTAIC MODULES[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 527-536 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0042
中图分类号: TP391.41    TM615   

参考文献

[1] 许立民, 唐鲲鹏, 王齐. 光伏行业分析及信贷政策建议[J]. 农业发展与金融, 2016(9): 39-42.
XU L M, TANG K P, WANG Q.Analysis of photovoltaic industry and suggestions on credit policy[J]. Agricultural development and finance, 2016(9): 39-42.
[2] 张俊红. 光伏阵列及其关键技术的研究[D]. 北京: 北京交通大学, 2019.
ZHANG J H.Study on photovoltaic array and related key technologies[D]. Beijing: Beijing Jiaotong University, 2019.
[3] 吕贝, 邱河梅, 张宇. 太阳能光伏发电产业现状及发展[J]. 华电技术, 2010, 32(1): 73-76, 82.
LYU B, QIU H M, ZHANG Y.Situation and development of solar photovoltaic power generation industry[J]. Huadian technology, 2010, 32(1): 73-76, 82.
[4] 王凌霄. 光伏发电系统的故障诊断与健康监测技术研究[D]. 杭州: 浙江大学, 2018.
WANG L X.Study on fault diagnosis and health monitoring technology of photovoltaic power system[D]. Hangzhou: Zhejiang University, 2018.
[5] SUN T Y, XING H S, CAO S X, et al.A novel detection method for hot spots of photovoltaic(PV) panels using improved anchors and prediction heads of YOLOv5 network[J]. Energy reports, 2022, 8: 1219-1229.
[6] MUÑOZ J, LORENZO E, MARTÍNEZ-MORENO F, et al. An investigation into hot-spots in two large grid-connected PV plants[J]. Progress in photovoltaics: research and applications, 2008, 16(8): 693-701.
[7] 潘文峰, 陆晨, 王加鸿, 等. 晶体硅光伏组件的热斑效应详解[J]. 太阳能, 2019(1): 48-52.
PAN W F, LU C, WANG J H, et al.Analyze on hot spot effect of crystalline silicon PV modules[J]. Solar energy, 2019(1): 48-52.
[8] GUERRIERO P, TRICOLI P, DALIENTO S.A bypass circuit for avoiding the hot spot in PV modules[J]. Solar energy, 2019, 181: 430-438.
[9] HOSSAM B, ITAKO K.Real time hotspot detection using scan-method adopted with P&O MPPT for PV generation system[C]//2016 IEEE 2nd Annual Southern Power Electronics Conference(SPEC)、 Auckland, New Zealand, 2017: 1-5.
[10] 姜栋潇. 基于数据挖掘的光伏阵列故障诊断研究[D]. 北京: 华北电力大学, 2016.
JIANG D X.Research on data mining based fault diagnosis of PV array[D]. Beijing: North China Electric Power University, 2016.
[11] 张晓娜, 高德东, 刘海雄, 等. 一种新型光伏阵列多传感器故障检测定位方法[J]. 可再生能源, 2016, 34(2): 166-172.
ZHANG X N, GAO D D, LIU H X, et al.A noval method for multi-sensor fault detection and positioning of photovoltaic array[J]. Renewable energy resources, 2016, 34(2): 166-172.
[12] ALSAFASFEH M, ABDEL-QADER I, BAZUIN B.Fault detection in photovoltaic system using SLIC and thermal images[C]//2017 8th International Conference on Information Technology(ICIT)、 Amman, Jordan, 2017: 672-676.
[13] LIU S Y, DONG L, LIAO X Z, et al.A dilation and erosion-based clustering approach for fault diagnosis of photovoltaic arrays[J]. IEEE sensors journal, 2019, 19(11): 4123-4137.
[14] 范思远, 姚显双, 曹生现, 等. 基于延迟回声状态网的光伏电池板温度预测方法[J]. 自动化学报, 2020, 46(12): 2701-2710.
FAN S Y, YAO X S, CAO S X, et al.Temperature prediction of photovoltaic panels based on delayed echo state network[J]. Acta automatica sinica, 2020, 46(12): 2701-2710.
[15] CHEN X M, OGDAHL W, HULSMAN HANNA L L, et al. Evaluation of beef cattle temperament by eye temperature using infrared thermography technology[J]. Computers and electronics in agriculture, 2021, 188: 106321.
[16] ACCIANI G, SIMIONE G B, VERGURA S, et al.Thermographic analysis of photovoltaic panels[C]//International Conference on Renewable Energies and Power Quality(ICREPQ), Spain, 2010: 23-25.
[17] MALDAGUE X.Theory and practice of infrared technology for nondestructive testing[J]. Materials science, 2001, 1: 684-700.
[18] AGHAEI M, GRIMACCIA F, GONANO C A, et al.Innovative automated control system for PV fields inspection and remote control[J]. IEEE transactions on industrial electronics, 2015, 62(11): 7287-7296.
[19] 王培珍, 郑诗程. 基于红外图像的太阳能光伏阵列故障分析[J]. 太阳能学报, 2010, 31(2): 197-202.
WANG P Z, ZHENG S C.Fault analysis of photovoltaic array based on infrared image[J]. Acta energiae solaris sinica, 2010, 31(2): 197-202.
[20] GAO X, MUNSON E, ABOUSLEMAN G P, et al.Automatic solar panel recognition and defect detection using infrared imaging[C]//SPIE Defense+Security, Proc SPIE 9476, automatic target recognition XXV. Baltimore, MD, USA, 2015, 9476: 196-204.
[21] KIM D, YOUN J, KIM C. Automatic fault recognition of photovoltaic modules based on statistical analysis of UAV thermography[J]. The international archives of the photogrammetry, remote sensing and spatial information sciences, 2017, XLII-2/W6: 179-182.
[22] KIM D, YOUN J, KIM C.Automatic photovoltaic panel area extraction from UAV thermal infrared images[J]. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 2016, 34(6): 559-568.
[23] 车曦. 基于红外图像识别的光伏组件热斑故障检测方法研究[D]. 重庆: 重庆大学, 2015.
CHE X.Research on image processing based photovoltaic modules hotspot detection[D]. Chongqing: Chongqing University, 2015.
[24] 蒋琳, 苏建徽, 施永, 等. 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41(8): 180-184.
JIANG L, SU J H, SHI Y, et al.Hot spots detection of operating pv arrays through ir thermal image[J]. Acta energiae solaris sinica, 2020, 41(8): 180-184.
[25] LI X X, YANG Q, LOU Z, et al.Deep learning based module defect analysis for large-scale photovoltaic farms[J]. IEEE transactions on energy conversion, 2019, 34(1): 520-529.
[26] OLIVEIRA A, AGHAEI M, RUTHER R.Automatic fault detection of photovoltaic arrays by convolutional neural networks during aerial infrared thermography[C]//36th EU PVSEC-European PV Solar Energy Conference and Exhibition. Marseille, France, 2019: 292-299.
[27] CHEN L S, YANG Q, YAN W J.Generative adversarial network based data augmentation for PV module defect pattern analysis[C]//2019 Chinese Control Conference (CCC), Guangzhou, China, 2019: 8422-8427.
[28] CEYLAN İ, ERKAYMAZ O, GEDIK E, et al.The prediction of photovoltaic module temperature with artificial neural networks[J]. Case studies in thermal engineering, 2014, 3: 11-20.
[29] WINSTON D P, MURUGAN M S, ELAVARASAN R M, et al.Solar PV’s micro crack and hotspots detection technique using NN and SVM[J]. IEEE access, 2021, 9: 127259-127269.
[30] 徐瑞东, 戴瀹, 孙晓燕. 基于BP神经网络的光伏阵列温度预测[J]. 工矿自动化, 2012, 38(7): 59-63.
XU R D, DAI Y, SUN X Y.Temperature prediction of photovoltaic array based on BP neural network[J]. Industry and mine automation, 2012, 38(7): 59-63.
[31] 王奇, 任一峰, 王璐. 小型光伏热斑的全卷积网络模型检测[J]. 测试技术学报, 2022, 36(3): 199-205.
WANG Q, REN Y F, WANG L.Full convolutional network model detection for small photovoltaic hot spots[J]. Journal of test and measurement technology, 2022, 36(3): 199-205.
[32] 郭宝柱. 光伏阵列热斑的红外图像处理的研究[D]. 天津: 天津理工大学, 2016.
GUO B Z.Research on infrared image processing of photovoltaic array of hot spot[D]. Tianjin: Tianjin University of Technology, 2016.
[33] KORKMAZ D, ACIKGOZ H.An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network[J]. Engineering applications of artificial intelligence, 2022, 113: 104959.
[34] XIANG K, PENG L L, YANG H Q, et al.A novel weight pruning strategy for light weight neural networks with application to the diagnosis of skin disease[J]. Applied soft computing, 2021, 111: 107707.
[35] 孙海蓉, 潘子杰, 晏勇. 基于深度卷积自编码网络的小样本光伏热斑识别与定位[J]. 华北电力大学学报(自然科学版), 2021, 48(4): 91-98.
SUN H R, PAN Z J, YAN Y.Identification and location of photovoltaic hot spots with small samples based on deep convolutional autoencoder network[J]. Journal of North China Electric Power University(natural science edition), 2021, 48(4): 91-98.
[36] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].2014: arXiv: 1409.0473. http://arxiv.org/abs/1409.0473.pdf.
[37] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[EB/OL].2017: arXiv: 1706.03762. http://arxiv.org/abs/1706.03762.pdf.
[38] WOO S, PARK J, LEE J Y, et al.CBAM: convolutional block attention module[C]//European Conference on Computer Vision, Cham, Germany, Springer, 2018: 3-19.
[39] BAKR E M, EL-SALLAB A, RASHWAN M.EMCA: efficient multiscale channel attention module[J]. IEEE access, 2022, 10: 103447-103461.
[40] CHEN B L, HUANG Y, XIA Q Q, et al.Nonlocal spatial attention module for image classification[J]. International journal of advanced robotic systems, 2020, 17(5): 172988142093892.
[41] WANG X L, GIRSHICK R, GUPTA A, et al.Non-local neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7794-7803.
[42] FU J, LIU J, TIAN H J, et al.Dual attention network for scene segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, 2020: 3141-3149.
[43] 樊涛, 孙涛, 刘虎. 基于注意力机制的光伏组件热斑检测算法[J]. 北京航空航天大学学报, 2022, 48(7): 1304-1313.
FAN T, SUN T, LIU H.Hot spot detection algorithm of photovoltaic module based on attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1304-1313.
[44] 贾帅康, 孙海蓉, 苏子凡. 改进的残差网络对红外图像热斑状态分类研究[J]. 工业控制计算机, 2021, 34(2): 79-82.
JIA S K, SUN H R, SU Z F.Hot spot state classification of infrared image based on improved residual[J]. Industrial control computer, 2021, 34(2): 79-82.
[45] ZHAO S S, CHEN H Y, WANG C H, et al.SNCF-Net: scale-aware neighborhood correlation feature network for hotspot defect detection of photovoltaic farms[J]. Measurement, 2023, 206: 112342.
[46] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 779-788.
[47] REDMON J, FARHADI A.YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 6517-6525.
[48] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2999-3007.
[49] HONG F, SONG J, MENG H, et al.A novel framework on intelligent detection for module defects of PV plant combining the visible and infrared images[J]. Solar energy, 2022, 236: 406-416.
[50] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[51] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2980-2988.
[52] 郭梦浩, 徐红伟. 基于Faster RCNN的红外热图像热斑缺陷检测研究[J]. 计算机系统应用, 2019, 28(11): 265-270.
GUO M H, XU H W.Hot spot defect detection based on infrared thermal image and Faster RCNN[J]. Computer systems & applications, 2019, 28(11): 265-270.
[53] 李林升, 曾平平. 改进深度学习框架Faster-RCNN的苹果目标检测[J]. 机械设计与研究, 2019, 35(5): 24-27.
LI L S, ZENG P P.Apple target detection based on improved Faster-RCNN framework of deep learning[J]. Machine design & research, 2019, 35(5): 24-27.
[54] 孙彦, 丁学文, 雷雨婷. 基于目标检测模型的人脸识别技术[J]. 计算机与网络, 2019, 45(22): 68-71.
SUN Y, DING X W, LEI Y T.Face recognition technology based on target detection model[J]. Computer & network, 2019, 45(22): 68-71.
[55] 王理顺, 钟勇, 李振东, 等. 基于深度学习的织物缺陷在线检测算法[J]. 计算机应用, 2019, 39(7): 2125-2128.
WANG L S, ZHONG Y, LI Z D, et al.On-line fabric defect recognition algorithm based on deep learning[J]. Journal of computer applications, 2019, 39(7): 2125-2128.
[56] 顾佳晨, 高雷, 刘路璐. 基于深度学习的目标检测算法在冷轧表面缺陷检测中的应用[J]. 冶金自动化, 2019, 43(6): 19-22, 27.
GU J C, GAO L, LIU L L.Application of object detection algorithm based on deep learning for inspection of surface defect of cold rolled strips[J]. Metallurgical industry automation, 2019, 43(6): 19-22, 27.
[57] ZHOU Z Z, LU Q H, WANG Z F, et al.Detection of micro-defects on irregular reflective surfaces based on improved faster R-CNN[J]. Sensors, 2019, 19(22): 5000.
[58] LI Z Y, WANG C, WANG Q, et al.CMS R-CNN: an efficient cascade multi-scale region-based convolutional neural network for accurate 2D small vehicle detection[C]//2019 Chinese Automation Congress(CAC), Hangzhou, China, 2020: 2382-2387.
[59] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.

基金

国家自然科学基金(12172210; 61502297)

PDF(2162 KB)

Accesses

Citation

Detail

段落导航
相关文章

/