风电机组用滑动轴承研究现状与发展趋势

李浩, 朱才朝, 谭建军, 孙章栋, 王红霞

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 77-85.

PDF(2378 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2378 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 77-85. DOI: 10.19912/j.0254-0096.tynxb.2023-0045

风电机组用滑动轴承研究现状与发展趋势

  • 李浩1, 朱才朝1, 谭建军1, 孙章栋2, 王红霞2
作者信息 +

RESEARCH STATUS AND DEVELOPMENT TREND OF SLIDING BEARINGS IN WIND TURBINE

  • Li Hao1, Zhu Caichao1, Tan Jianjun1, Sun Zhangdong2, Wang Hongxia2
Author information +
文章历史 +

摘要

首先,分析滚动轴承在风电传动系统中应用的局限性,探讨滑动轴承“以滑代滚”的可行性。然后,从风电机组用滑动轴承结构设计、轴承材料、性能分析及优化、试验测试及应用4个关键环节,综述滑动轴承风电应用的现有技术手段和面临的困难。最后,对风电机组滑动轴承的材料改性、一体化设计、延寿技术发展趋势做出展望。

Abstract

Firstly, this paper analyzes the limitations of rolling bearings application in wind turbine transmission systems, and the feasibility of journal bearings "replace rolling with sliding" is explored. Then, from the four key links of wind turbine journal bearing structure design, bearing material, performance analysis and optimization, experimental testing and application, the existing technical means and difficulties faced by journal bearing application in wind turbine are reviewed. Finally, the development trend of material modification, integrated design, and life extension technology of wind turbine journal bearings are prospected.

关键词

滑动轴承 / 风电机组 / 滚动轴承 / 齿轮箱

Key words

journal bearing / wind turbines / rolling bearing / gearbox

引用本文

导出引用
李浩, 朱才朝, 谭建军, 孙章栋, 王红霞. 风电机组用滑动轴承研究现状与发展趋势[J]. 太阳能学报. 2024, 45(5): 77-85 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0045
Li Hao, Zhu Caichao, Tan Jianjun, Sun Zhangdong, Wang Hongxia. RESEARCH STATUS AND DEVELOPMENT TREND OF SLIDING BEARINGS IN WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 77-85 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0045
中图分类号: TM614   

参考文献

[1] G W E C. Global wind report 2022[EB/OL]. https://gwec.net/global-wind-report-2022/, 2022, 1-10.
[2] 王妮妮, 马萍, 张宏立, 等. 基于多尺度深度卷积网络特征融合的滚动轴承故障诊断[J]. 太阳能学报, 2022, 43(4): 351-358.
WANG N N, MA P, ZHANG H L, et al.Fault diagnosis of rolling bearing based on feature fusion of multi-scale deep convolutional network[J]. Acta energiae solaris sinica, 2022, 43(4): 351-358.
[3] DHANOLA A, GARG H C.Tribological challenges and advancements in wind turbine bearings: a review[J]. Engineering failure analysis, 2020, 118: 104885.
[4] 朱才朝, 周少华, 张亚宾, 等. 滑动轴承在风电齿轮箱中的应用现状与发展趋势[J]. 风能, 2021(9): 38-42.
ZHU C C, ZHOU S H, ZHANG Y B, et al.Application status and development trend of sliding bearing in wind turbine gearbox[J]. Wind energy, 2021(9): 38-42.
[5] 毕玉, 朱才朝, 谭建军, 等. 齿根裂纹对风电齿轮箱高速级动态特性影响分析及其故障模式识别[J]. 太阳能学报, 2022, 43(7): 284-292.
BI Y, ZHU C C, TAN J J, et al.Influence of tooth root crack on dynamic characteristics of wind turbine gearbox high-speed stage and failure mode identification[J]. Acta energiae solaris sinica, 2022, 43(7): 284-292.
[6] THOMAS M.Validation of journal bearings for use in wind turbine gearboxes[EB/OL]. https://www.windsystemsmag.com/validation-of-journal-bearings-for-use-in-wind-turbine-gearboxes/.
[7] 谭建军, 朱才朝, 宋朝省, 等. 风电机组传动链刚柔耦合动态特性分析[J]. 太阳能学报, 2020, 41(7): 341-351.
TAN J J, ZHU C C, SONG C S, et al.Dynamic characteristics analysis of wind turbine drivetrain with rigid-flexible coupling[J]. Acta energiae solaris sinica, 2020, 41(7): 341-351.
[8] DVORAK P.What journal bearings may contribute to wind turbine gearboxes[EB/OL]. https://www.windpowerengineering.com/journalbearingsmaycontribute-wind-turbinegea-rboxes/.
[9] ILLENBERGER C M, TOBIE T, STAHL K.Damage mechanisms and tooth flank load capacity of oil-lubricated peek gears[J]. Journal of applied polymer science, 2022, 139(30): 1-10.
[10] LU Z H, LIU H J, ZHU C C, et al.Identification of failure modes of a PEEK-steel gear pair under lubrication[J]. International journal of fatigue, 2019, 125: 342-348.
[11] SCHRÖDER T, JACOBS G, ROLINK A, et al. “FlexPad” - Innovative conical sliding bearing for the main shaft of wind turbines[J]. Journal of physics: conference series, 2019, 1222(1): 012026.
[12] 樊文欣, 郭佩剑, 原霞, 等. 载荷和转速对铜合金材料摩擦磨损性能的影响[J]. 摩擦学学报, 2021, 41(6): 821-832.
FAN W X, GUO P J, YUAN X, et al.Effects of load and speed on the friction and wear properties of copper alloys[J]. Tribology, 2021, 41(6): 821-832.
[13] COSTA H L, HUTCHINGS I M.Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions[J]. Tribology international, 2007, 40(8): 1227-1238.
[14] NIE T, YANG K, ZHOU L, et al.CFD analysis of load capacity of journal bearing with surface texture[J]. Energy reports, 2022, 8: 327-334.
[15] YU H W, WANG X L, ZHOU F.Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces[J]. Tribology letters, 2010, 37(2): 123-130.
[16] QIU M F, MINSON B R, RAEYMAEKERS B.The effect of texture shape on the friction coefficient and stiffness of gas-lubricated parallel slider bearings[J]. Tribology international, 2013, 67: 278-288.
[17] ATWAL J C, PANDEY R K.Influence of new surface micro-structures on the performance behaviours of fluid film tilting pad thrust bearings[J]. Proceedings of the institution of mechanical engineers, part C: journal of mechanical engineering science, 2022, 236(6): 3111-3134.
[18] QIANG H W, GAO G M, YE S T, et al.Effect of characteristic parameters and distribution of friction pair surface texture on lubrication properties[J]. Lubricants, 2023, 11(3): 139.
[19] 田德, 陶立壮, 胡玥, 等. 基于齿廓修形和摩擦耦合的风电齿轮磨损动力学特性分析[J]. 太阳能学报, 2022, 43(5): 260-269.
TIAN D, TAO L Z, HU Y, et al.Dynamics of wind turbine gear wear fault based on tooth profile modification and friction coupling[J]. Acta energiae solaris sinica, 2022, 43(5): 260-269.
[20] XIANG G, YANG T Y, GUO J A, et al. Optimization transient wear and contact performances of water-lubricated bearings under fluid-solid-thermal coupling condition using profile modification[J]. Wear, 2022, 502/503: 204379.
[21] GU T, JANE W Q, XIONG S W, et al.Profile design for misaligned journal bearings subjected to transient mixed lubrication[J]. Journal of tribology, 2019, 141(7): 071701.
[22] AGGARWAL S, PANDEY R.Performance behaviour of sector shape taper-flat pad thrust bearing with different taper surface profiles[C]//National Tribology Conference (NTC-2014), Bangaluru, India, 2014: 1-8.
[23] LIU C P, ZHONG N, LU X Q, et al.A multiobjective optimization of journal bearing with double parabolic profiles and groove textures under steady operating conditions[J]. Mechanics & industry, 2020, 21(3): 305.
[24] 田德, 胡玥, 陶立壮. 风电齿轮箱浮动构件支撑刚度的分析与优化设计[J]. 太阳能学报, 2023, 44(4): 195-202.
TIAN D, HU Y, TAO L Z.Analysis and optimization design of support stiffness of floating components of wind turbine gearbox[J]. Acta energiae solaris sinica, 2023, 44(4): 195-202.
[25] ZHANG C P, WEI J, WANG F M, et al.Dynamic model and load sharing performance of planetary gear system with journal bearing[J]. Mechanism and machine theory, 2020, 151: 103898.
[26] HAGEMANN T, DING H H, RADTKE E, et al.Operating behavior of sliding planet gear bearings for wind turbine gearbox applications—part I: basic relations[J]. Lubricants, 2021, 9(10): 97.
[27] HAGEMANN T, DING H H, RADTKE E, et al.Operating behavior of sliding planet gear bearings for wind turbine gearbox applications—part II: impact of structure deformation[J]. Lubricants, 2021, 9(10): 98.
[28] DONG P, LAI J B, GUO W, et al.An analytical approach for calculating thin-walled planet bearing load distribution[J]. International journal of mechanical sciences, 2023, 242: 108019.
[29] LUCASSEN M, DECKER T, GUZMÁN F G, et al. Simulation methodology for the identification of critical operating conditions of planetary journal bearings in wind turbines[J]. Forschung im ingenieurwesen, 2023, 87(1): 147-157.
[30] CUI S H, GU L, WANG L Q, et al.Numerical analysis on the dynamic contact behavior of hydrodynamic journal bearings during start-up[J]. Tribology international, 2018, 121: 260-268.
[31] 崔淑慧, 闫文民, 刘奇, 等. 加速方式对径向滑动轴承启停过程的影响[EB/OL]. 轴承, 1-9[2024-01-02]. http://kns.cnki.net/kcms/detail/41.1148.th.20230322.1837.005.html.
CUI S H, YAN W M, LIU Q, et al. Effect of acceleration mode on the start-stop behavior of plain journal bearings[EB/OL]. Bearing: 1-9[2024-01-02]. http://kns.cnki.net/kcms/detail/41.1148.th.20230322.1837.005.html.
[32] LIANG P, LI X Y, GUO F, et al.Influence of sea wave shock on transient start-up performance of water-lubricated bearing[J]. Tribology international, 2022, 167: 107332.
[33] XIANG G, WANG C, WANG Y J, et al.Dynamic mixed lubrication investigation of water-lubricated bearing with unbalanced rotor during start-up[J]. Tribology transactions, 2021, 64(4): 764-776.
[34] YANG J E, ZHU R P, LEE H P, et al.Experimental and numerical dynamic analysis of marine herringbone planetary gearbox supported by journal bearings[J]. Journal of sound and vibration, 2023, 545: 117426.
[35] 李同杰, 靳广虎, 鲍和云, 等. 滑动轴承-行星齿轮耦合系统非线性动力学特性研究[J]. 船舶力学, 2018, 22(4): 499-508.
LI T J, JIN G H, BAO H Y, et al.Study on coupling nonlinear dynamics of planetary gear train supported by a slide bearing[J]. Journal of ship mechanics, 2018, 22(4): 499-508.
[36] HESS N, SHANG L Z.Development of a machine learning model for elastohydrodynamic pressure prediction in journal bearings[J]. Journal of tribology, 2022, 144(8): 081603.
[37] CHASALEVRIS, LOUIS.Evaluation of transient response of turbochargers and turbines using database method for the nonlinear forces of journal bearings[J]. Lubricants, 2019, 7(9): 78.
[38] PRADHAN S K, KUMAR R, MISHRA P C.Material modeling and optimization of rough elliptic bore journal bearing[J]. Materials today: proceedings, 2021, 44: 1021-1027.
[39] SHALTOUT M L, HEGAZI H A.Multi-objective design optimization of hydrodynamic journal bearings using a hybrid approach[J]. Industrial lubrication and tribology, 2021, 73(7): 1052-1060.
[40] MIKAEELI S Z, AGHANAJAFI C, AKBARZADEH P.Numerical study and parameter optimization of partial journal bearing using MOPSO algorithm[J]. Proceedings of the institution of mechanical engineers, part J: journal of engineering tribology, 2020, 234(1): 145-158.
[41] PROST J, BOIDI G, VARGA M, et al.Lifetime assessment of porous journal bearings using joint time-frequency analysis of real-time sensor data[J]. Tribology international, 2022, 169: 107488.
[42] JENSEN K M, SANTOS I F.Design of actively-controlled oil lubrication to reduce rotor-bearing-foundation coupled vibrations - theory & experiment[J]. Proceedings of the institution of mechanical engineers, part J: journal of engineering tribology, 2022, 236(8): 1493-1510.
[43] BOBZIN K, WIETHEGER W, JACOBS G, et al. Thermally sprayed coatings for highly stressed sliding bearings[J]. Wear, 2020, 458/459: 203415.
[44] 吉科峰. 滑动轴承在风力发电齿轮箱中的应用[J]. 山西冶金, 2017, 40(3): 116-117.
JI K F.Application of sliding bearings in wind power gearbox[J]. Shanxi metallurgy, 2017, 40(3): 116-117.
[45] 每日风电. 金风科技新型轴系样机成功并网[EB/OL]. http://www.chinawindnews.com/21008.html.
Daily Wind Power.Goldwind’s new shafting prototype was successfully connected to the grid[EB/OL]. http://www.chinawindnews.com/21008.html.
[46] RENK. Testing solutions for the windpower industry[EB/OL].https://www.renk.com/en/products/test-systems/windpower.
[47] 孙承玉, 于颂东, 郑东旭, 等. 风电机组主轴三向组合自润滑滑动轴承: CN101963188A[P].2011-02-02.
SUN C Y, YU S D, ZHENG D X, et al. Three-directional composite self-lubricating sliding bearing for main shaft of wind turbine set: CN101963188A[P].2011-02-02.
[48] JETHUR. 顺应“以滑代滚”发展趋势, 着力高端轴承自主化研发[EB/OL].http://www.hnsund.com/news/46.html.
JETHUR. Comply with the development trend of "replacing rolling with sliding" and focus on independent research and development of high-end bearings[EB/OL].http://www.hnsund.com/ news/46.html.
[49] PAUL D. Winergy to show journal bearing technology for gearboxes at the WindEnergy Hamburg2014[EB/OL]. https://www.windpowerengineering.com/winergy-show-journal-bearing-technology-gearboxes-windenergy-hamburg-2014/.
[50] MOVENTAS. Moventas exceed evo wind turbine gearbox[EB/OL].https://www.moventas.com/zh/.
[51] ZF. 滑动轴承—滚动轴承的可行替代方案[EB/OL].https://www.sohu.com/a/368089066_99935030.
ZF. Journal bearing - a feasible alternative to rolling bearing[EB/OL].https://www.sohu.com/a/368089066_99935030.
[52] 南京高速齿轮制造有限公司. 品质助力赢市场, 创新拥抱好时代[EB/OL].https://www.ngctransmission.com/zh/news-detail/2020101902.html.
NGC. Quality helps win the market and innovation embraces a good era[EB/OL].https://www.ngctransmission.com/zh/news-detail/2020101902.html.
[53] NEJAD A R, KELLER J, GUO Y, et al.Wind turbine drivetrains: state-of-the-art technologies and future development trends[J]. Wind energy science, 2022, 7(1): 387-411.
[54] 威能极. 威能极和上海电气联合开发5.X兆瓦混合驱动首套传动链下线[EB/OL].https://news.bjx.com.cn/html/20210423/1149049.shtml.
WINERGY. The first set of drive chain of 5.X megawatt hybrid drive jointly developed by Winergy and Shanghai Electric was offline[EB/OL]. https://news.bjx.com.cn/html/20210423/1149049.shtml.

基金

国家重点研发计划(2022YFB4201100); 重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0051); 国家海上风力发电工程技术研究中心开放基金(HSFD22005)

PDF(2378 KB)

Accesses

Citation

Detail

段落导航
相关文章

/