添加剂对废旧冰箱聚氨酯泡沫燃烧特性的影响研究

陈奇奇, 陈梦君, 舒建成, 王蓉, 刘宜, 尚闽

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 165-171.

PDF(1783 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1783 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 165-171. DOI: 10.19912/j.0254-0096.tynxb.2023-0053

添加剂对废旧冰箱聚氨酯泡沫燃烧特性的影响研究

  • 陈奇奇1, 陈梦君1, 舒建成1, 王蓉2, 刘宜3, 尚闽3
作者信息 +

EFFECT OF ADDITIVES ON COMBUSTION CHARACTERISTICS OF WASTE REFRIGERATOR POLYURETHANE FOAM

  • Chen Qiqi1, Chen Mengjun1, Shu Jiancheng1, Wang Rong2, Liu Yi3, Shang Min3
Author information +
文章历史 +

摘要

以废旧冰箱聚氨酯泡沫(PUF)为原料,选取玉米秸秆(CS)、木屑(WS)、煤粉(PC)作为添加剂制备成型燃料,采用热重分析仪和氧弹量热仪研究3种添加剂对PUF成型燃料燃烧性能及热值的影响,并采用Coats-Redfern积分法研究其动力学行为。结果表明:3种添加剂会使固定碳燃烧阶段最大失重速率峰值温度向低温区移动,会降低PUF成型燃料的残渣剩余量与活化能、提高热值。此外,添加质量分数为8%的WS的PUF成型燃料残渣量低、综合燃烧特性指标高、燃烧充分、活化能较低,PUF成型燃料的燃烧效率最佳。

Abstract

Waste refrigerator polyurethane foam (PUF) was used as raw material to prepare molding fuel. Corn Stalk (CS), Wood Sawdust (WS) and Pulverized Coal (PC) were selected as additives. The effects of three additives on PUF molding fuel combustion performance and calorific value were studied by thermogravimetric analysis and oxygen bomb calorimeter. The Coats-Redfern integral method was used to discuss its combustion kinetic. The results show that the three additives could shift the peak temperature of the maximum weight loss rate in the fixed carbon combustion stage to the low temperature zone, reduce the residual amount and activation energy, and increase the calorific value. The best combustion efficiency of PUF molding fuel is the one added with 8 wt.% WS since it could be fully combusted, having the lowest residue content, the highest comprehensive combustion characteristic as well as the lowest activation energy.

关键词

生物质 / / 热重分析 / 废旧冰箱聚氨酯泡沫 / 反应动力学 / 热值

Key words

biomass / coal / thermogravimetric analysis / waste refrigerator polyurethane foam / kinetics / calorific value

引用本文

导出引用
陈奇奇, 陈梦君, 舒建成, 王蓉, 刘宜, 尚闽. 添加剂对废旧冰箱聚氨酯泡沫燃烧特性的影响研究[J]. 太阳能学报. 2024, 45(5): 165-171 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0053
Chen Qiqi, Chen Mengjun, Shu Jiancheng, Wang Rong, Liu Yi, Shang Min. EFFECT OF ADDITIVES ON COMBUSTION CHARACTERISTICS OF WASTE REFRIGERATOR POLYURETHANE FOAM[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 165-171 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0053
中图分类号: TQ328.3    TK16   

参考文献

[1] 杨雨涵, 王晓岩, 苑文仪, 等. 废旧冰箱聚氨酯资源化再利用技术研究进展[J]. 环境工程, 2018, 36(6): 134-139.
YANG Y H, WANG X Y, YUAN W Y, et al.Recycling and utilization of rigid polyurethane foam from waste refrigerators[J]. Environmental engineering, 2018, 36(6): 134-139.
[2] 中华人民共和国生态环境部. 关于2021年第二批次废弃电器电子产品拆解处理种类和数量复核情况的函[EB/OL].[2021-11-26]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk04/202111/t20211129_962074.html
Ministry of Ecology and Environment of the People’s Republic of China. Letter on the review of the types and quantities of dismantling of the second batch of waste electrical and electronic products in2021[EB/OL].[2021-11-26]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk04/202111/t20211129_962074.html
[3] AL-SALEM S M, ANTELAVA A, CONSTANTINOU A, et al. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW)[J]. Journal of environmental manage ment, 2017, 197: 177-198.
[4] HEIRAN R, GHADERIAN A, REGHUNADHAN A, et al.Glycolysis: an efficient route for recycling of end of life polyurethane foams[J]. Journal of polymer research, 2021, 28(1): 1-19.
[5] GAMA N, GODINHO B, MARQUES G, et al.Recycling of polyurethane scraps via acidolysis[J]. Chemical engineering journal, 2020, 395: 125102.
[6] SKLENIČKOVÁ K, ABBRENT S, HALECKÝ M, et al. Biodegradability and ecotoxicity of polyurethane foams: a review[J]. Critical reviews in environmental science and technology, 2022, 52(2): 157-202.
[7] 邢相栋, 王莎, 张秋利, 等. 废塑料与兰炭混合燃烧动力学分析[J]. 煤炭转化, 2019, 42(4): 50-57.
XING X D, WANG S, ZHANG Q L, et al.Kinetic analysis of mixed combustion of waste plastics and semi-coke[J]. Coal conversion, 2019, 42(4): 50-57.
[8] 陈泽宇, 邢献军, 李永玲, 等. 城市生活垃圾与生物质成型燃料混合热解特性及动力学研究[J]. 太阳能学报, 2020, 41(10): 340-346.
CHEN Z Y, XING X J, LI Y L, et al.Co-pyrolysis characteristics and kinetic analysis of municipal solid waste and biomass briquette[J]. Acta energiae solaris sinica, 2020, 41(10): 340-346.
[9] JIANG L, ZHANG D, LI M, et al.Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS[J]. Fuel, 2018, 222: 11-20.
[10] 王明峰, 戚日莹, 徐建宇, 等. 桉树木屑成型颗粒成分变化和燃烧特性的研究[J]. 太阳能学报, 2021, 42(7): 463-468.
WANG M F, QI R Y, XU J Y, et al.Study on composition and combustion properties of eucalyptus sawdust pellets[J]. Acta energiae solaris sinica, 2021, 42(7): 463-468.
[11] WANG H Y, TIAN Y, LI J L, et al.Experimental study on thermal effect and gas release laws of coal-polyurethane cooperative spontaneous combustion[J]. Scientific reports, 2021, 11: 1994.
[12] WANG H Y, TIAN Y, CHEN X, et al.Kinetic and synergetic effect analysis of the co-combustion of coal blended with polyurethane materials[J]. ACS omega, 2020, 5(40): 26005-26014.
[13] BURRA K G, GUPTA A K.Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes[J]. Applied energy, 2018, 220: 408-418.
[14] 关雎. 生物质固体成型燃料热值测定方法的研究[D]. 广州: 广东工业大学, 2020.
GUAN J.Study on calorific value determination methods of biomass solid forming fuel[D]. Guangzhou: Guangdong University of Technology, 2020.
[15] SIMONEIT B R T, SCHAUER J J, NOLTE C G, et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles[J]. Atmospheric environment, 1999, 33(2): 173-182.
[16] 王才威, 张守玉, 姚云隆, 等. 生物质成型炭燃烧特性研究[J]. 太阳能学报, 2019, 40(7): 2014-2020.
WANG C W, ZHANG S Y, YAO Y L, et al.Study on combustion characteristics of carbonized biomass briquettes[J]. Acta energiae solaris sinica, 2019, 40(7): 2014-2020.
[17] 盛晨绪, 姚宗路, 赵立欣, 等. 棉秆炭与生物质焦油混合成型及燃烧特性研究[J]. 太阳能学报, 2022, 43(7): 458-464.
SHENG C X, YAO Z L, ZHAO L X, et al.Condensification and co-combustion characteristics of blends of cotton stalk char and bio-tar[J]. Acta energiae solaris sinica, 2022, 43(7): 458-464.
[18] ÖZSIN G, PÜTÜN A E. Insights into pyrolysis and co-pyrolysis of biomass and polystyrene: thermochemical behaviors, kinetics and evolved gas analysis[J]. Energy conversion and management, 2017, 149: 675-685.
[19] 侯宝鑫, 张守玉, 茆青, 等. 生物质炭化成型燃料燃烧性能的试验研究[J]. 太阳能学报, 2017, 38(4): 885-891.
HOU B X, ZHANG S Y, MAO Q, et al.Experimental study on combustion characteristics of biomass carbonized forming fuel[J]. Acta energiae solaris sinica, 2017, 38(4): 885-891.
[20] 房瑀人. 生物质和煤燃烧特性研究及动力学分析[D]. 秦皇岛: 燕山大学, 2020.
FANG Y R.Experimental and kinetics study on combustion characteristics of biomass and coal[D]. Qinhuangdao: Yanshan University, 2020.
[21] 毛俏婷, 胡俊豪, 赵雨佳, 等. 生物质和废塑料混合热解协同特性研究[J]. 燃料化学学报, 2020, 48(3): 286-292.
MAO Q T, HU J H, ZHAO Y J, et al.Synergistic effect during biomass and waste plastics co-pyrolysis[J]. Journal of fuel chemistry and technology, 2020, 48(3): 286-292.
[22] 戴重阳, 田宜水, 胡二峰, 等. 生物质与低阶煤共热解特性研究及其技术进展[J]. 太阳能学报, 2021, 42(12): 326-333.
DAI C Y, TIAN Y S, HU E F, et al.Research on co-pyrolysis characteristics of biomass and low-rank coal and its technical progress[J]. Acta energiae solaris sinica, 2021, 42(12): 326-333.

基金

四川省科技计划(2022YFS0459)

PDF(1783 KB)

Accesses

Citation

Detail

段落导航
相关文章

/