基于卫星图像的城区屋面分布式光伏潜力评估

彭曙蓉, 何洁妮, 刘韬文, 李彬, 苏盛, 壮婕

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 517-526.

PDF(4998 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4998 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 517-526. DOI: 10.19912/j.0254-0096.tynxb.2023-0054

基于卫星图像的城区屋面分布式光伏潜力评估

  • 彭曙蓉1, 何洁妮2, 刘韬文3, 李彬1, 苏盛1, 壮婕1
作者信息 +

SATELLITE IMAGE-BASED ASSESSMENT OF DISTRIBUTED PV POTENTIAL ON URBAN ROOFS

  • Peng Shurong1, He Jieni2, Liu Taowen3, Li Bin1, Su Sheng1, Zhuang Jie1
Author information +
文章历史 +

摘要

结合市辖区层面光伏发展情况以及城市中不同用地的特点,利用卫星图片识别长沙市各地区适合装设分布式光伏的建筑区域。基于太阳高度角和方位角,通过山体阴影分析屋顶上的建筑阴影,计算地区屋面光伏可承载容量。对市场侧、制造商及电网部门的分布式光伏规划进行研究。通过识别结果可为光伏建设方及电网提供明确地域列表及可用面积,以及可实现基于实际建设项目的可新增光分布式光伏装机容量的预测,以期为分布式光伏电站用地不足问题提供新的解决思路。

Abstract

Combined with the development of photovoltaic technology at the municipal level and the characteristics of different land uses in the city. Satellite images are used to identify building areas suitable for installing distributed photovoltaic technology in various regions of Changsha City. Based on the sun's altitude and azimuth angles, the shadow of buildings on the roof is analyzed through mountain shadows to calculate the rooftop photovoltaic carrying capacity of the area. Conduct research on distributed photovoltaic planning for market side, manufacturers, and power grid departments. The experiment provides a clear geographical list and available area for the photovoltaic construction party and the power grid through identification results, as well as a prediction of the newly added distributed photovoltaic installed capacity based on actual construction projects, providing new solutions to the problem of insufficient land for distributed photovoltaic power stations.

关键词

可再生能源 / 分布式发电 / 深度学习 / 语义分割 / 卫星图像

Key words

renewable energy / distributed power generation / deep learning / semantic segmentation / satellite imagery

引用本文

导出引用
彭曙蓉, 何洁妮, 刘韬文, 李彬, 苏盛, 壮婕. 基于卫星图像的城区屋面分布式光伏潜力评估[J]. 太阳能学报. 2024, 45(5): 517-526 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0054
Peng Shurong, He Jieni, Liu Taowen, Li Bin, Su Sheng, Zhuang Jie. SATELLITE IMAGE-BASED ASSESSMENT OF DISTRIBUTED PV POTENTIAL ON URBAN ROOFS[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 517-526 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0054
中图分类号: TM615   

参考文献

[1] 段建民, 王志新, 王承民, 等. 考虑碳减排效益的可再生电源规划[J]. 电网技术, 2015, 39(1): 11-15.
DUAN J M, WANG Z X, WANG C M, et al.Renewable power planning considering carbon emission reduction benefits[J]. Power system technology, 2015, 39(1): 11-15.
[2] 王君, 余本东, 王矗垚, 等. 太阳能光伏光热建筑一体化(BIPV/T)研究新进展[J]. 太阳能学报, 2022, 43(6): 72-78.
WANG J, YU B D, WANG C Y, et al.New advancements of building integrated photovoltaic/thermal system(BIPV/T)[J]. Acta energiae solaris sinica, 2022, 43(6): 72-78.
[3] 关立, 黄国栋, 吴锋, 等. 面向高比例分布式光伏的电力调度及市场化机制研究[J]. 浙江电力, 2022, 41(8): 10-16.
GUAN L, HUANG G D, WU F, et al.Research on power dispatching and marketization mechanism for high-proportion distributed photovoltaic[J]. Zhejiang electric power, 2022, 41(8): 10-16.
[4] 任林涛, 汪飞, 杨柳柳, 等. 分布式光伏电站系统效率模型分析与研究[J]. 太阳能学报, 2019, 40(6): 1599-1606.
REN L T, WANG F, YANG L L, et al.Analysis and research on efficiency models of distributed PV power system[J]. Acta energiae solaris sinica, 2019, 40(6): 1599-1606.
[5] 邢文继, 金燕, 仇晓兰, 等. 高分辨率SAR子孔径图像相干性分析及其地物分类应用[J]. 中国科学院大学学报, 2022, 39(6): 764-775.
XING W J, JIN Y, QIU X L, et al.Coherence analysis of high resolution SAR sub-aperture image and its application in ground feature classification[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(6): 764-775.
[6] 谭衢霖. 高分辨率多光谱影像城区建筑物提取研究[J]. 测绘学报, 2010, 39(6): 618-623.
TAN Q L.Urban building extraction from VHR multi-spectral images using object-based classification[J]. Acta geodaetica et cartographica sinica, 2010, 39(6): 618-623.
[7] 李亮, 王成, 李世华, 等. 基于机载LiDAR数据的建筑屋顶点云提取方法[J]. 中国科学院大学学报, 2016, 33(4): 537-541.
LI L, WANG C, LI S H, et al.Building roof point extraction based on airborne LiDAR data[J]. Journal of University of Chinese Academy of Sciences, 2016, 33(4): 537-541.
[8] 赵传, 张保明, 陈小卫, 等. 一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法[J]. 测绘学报, 2017, 46(9): 1123-1134.
ZHAO C, ZHANG B M, CHEN X W, et al.Accurate and automatic building roof extraction using neighborhood information of point clouds[J]. Acta geodaetica et cartographica sinica, 2017, 46(9): 1123-1134.
[9] WEI Y F, ZHAO Z M, SONG J H.Urban building extraction from high-resolution satellite panchromatic image using clustering and edge detection[C]//2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 2004: 2008-2010.
[10] BISCHKE B, HELBER P, FOLZ J, et al.Multi-task learning for segmentation of building footprints with deep neural networks[C]//2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 2019: 1480-1484.
[11] MOKHTARZADE M, VALADAN ZOEJ M J. Road detection from high-resolution satellite images using artificial neural networks[J]. International journal of applied earth observation and geoinformation, 2007, 9(1): 32-40.
[12] YU J F, WANG Z C, MAJUMDAR A, et al.DeepSolar: a machine learning framework to efficiently construct a solar deployment database in the United States[J]. Joule, 2018, 2(12): 2605-2617.
[13] 陈杨, 何勇. 基于农村分布式光伏电站勘测的小型无人机倾斜摄影系统及试验[J]. 农业工程学报, 2019, 35(22): 305-313.
CHEN Y, HE Y.Small UAV oblique camera system design and test for distributed photovoltaic power station survey[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 305-313.
[14] 周颖, 叶红, 王彤, 等. 基于多尺度CNN的光伏组件缺陷识别[J]. 太阳能学报, 2022, 43(2): 211-216.
ZHOU Y, YE H, WANG T, et al.Photovoltaic module defect identification based on mulit-scale convolution neural network[J]. Acta energiae solaris sinica, 2022, 43(2): 211-216.
[15] 蔺阿琳. 城市太阳能可利用空间评估与规划研究: 以哈尔滨为例[D]. 哈尔滨: 哈尔滨工业大学, 2020.
LIN A L.Research on assessment and planning of available space of urban solar applications[D]. Harbin: Harbin Institute of Technology, 2020.
[16] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015: 3431-3440.
[17] 张敏, 李爱武, 计枚选. “整县推进”模式下屋顶分布式光伏发电项目的典型设计方案和设计要点探讨[J]. 太阳能, 2022(11): 16-21.
ZHANG M, LI A W, JI M X.Discussion on typical design scheme and key design points of rooftop distributed PV power generation project under the mode of “county-wide promotion”[J]. Solar energy, 2022(11): 16-21.
[18] MOHAMMAD R A, 李军. 基于Faster R-CNN的城市道路目标检测[J]. 电子技术与软件工程, 2023(1): 149-152.
MOHAMMAD R A, LI J.Urban road object detection based on Faster R-CNN[J]. Electronic technology & software engineering, 2023(1): 149-152.
[19] 吴开顺, 郑道远, 陈妍伶, 等. 中国典型城市建筑物实例数据集[J]. 中国科学数据, 2021, 6(1): 184-192.
WU K S, ZHENG D Y, CHEN Y L, et al.A dataset of building instances of typical cities in China[J]. China scientific data, 2021, 6(1): 184-192.

基金

国家自然科学基金(51777015)

PDF(4998 KB)

Accesses

Citation

Detail

段落导航
相关文章

/