基于LES方法的新型涡激振动风能采集器俘能特性分析

胡捷, 黄俊仕, 李红, 文建萍, 肖志峰, 黎波

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 70-76.

PDF(2998 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2998 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 70-76. DOI: 10.19912/j.0254-0096.tynxb.2023-0058

基于LES方法的新型涡激振动风能采集器俘能特性分析

  • 胡捷1,2, 黄俊仕1, 李红1, 文建萍1, 肖志峰1, 黎波1,2
作者信息 +

RESEARCH ON VORTEX-INDUCED VIBRATION AIRFLOW ENERGY HARVESTING PROPERTIES BASED ON LES METHOD

  • Hu Jie1,2, Huang Junshi1, Li Hong1, Wen Jianping1, Xiao Zhifeng1, Li Bo1,2
Author information +
文章历史 +

摘要

以所研制的涡激振动能量收集器(VIVPEHS)为研究对象,联合开源软件OpenFOAM和Matlab对大涡模拟(LES)方程、二阶范德波尔(Van der Pol's)方程和高斯定律(Gauss’law)进行涡街振动俘能耦合计算,建立流机电耦合VIVPEHS数值模型,同时搭建并列双圆柱VIVPEHS俘能测试平台对数值模型开展实验验证。结果表明:升/阻力、压电梁位移、机电转换效率和尾流形态的预测值与实验数据符合良好。实验和计算结果表明,当圆柱直径(D)不变时,随着俘能距离(Sn)的增加,输出电压先增大后减小,在Sn=8D时输出电压最大;随着负载阻抗的增大,输出功率先增大后减小,存在最优负载阻抗(25000 Ω),此时并列双圆柱VIVPEHS的输出功率可达72 mW,且直接点亮21只商用LED。

Abstract

In this paper, the energy capture characteristics of the vortex-induced vibration piezoelectric energy harvesters (VIVPEHS) with two side-by-side circular cylinders are deeply studied, Based on the open-source platform of OpenFOAM & Matlab software, coupling calculation for vortex-induced vibration is taken on LES equation, second-order Van der pol equation and Gauss law. Meanwhile, the two side-by-side circular cylinders of VIVPEHS is prepared, and a energy collection platform is established for above model verification. The numerical results show that the lift and drag force, piezoelectric cantilever displacement, electromechanical conversion efficiency and wake morphology are in good agreement with the experimental data, and this results show the accuracy and rationality of VIVPEHS numerical calculation. Moreover, the results of experiment and calculation show that the output voltage (U) first increases and then decreases with the energy capture distance (Sn) increases when the cylinder diameter (D) is certain, the U is the largest at Sn=8D. In addition, the results of experiment and calculation show that the output power (P) first increases and then decreases with the increase of load impedance (R). It is noteworthy that the P reaches 72 mW when the optimal R is 25000 Ω, and 21 commercial LEDs are lit by our device when D=0.1m,v=2.0m/s,Sn=8D.

关键词

风能 / 涡激振动 / 模型 / 压电 / 流机电耦合

Key words

wind energy / vortex-induced vibration / model / piezoelectric / aero-electromechanical coupling

引用本文

导出引用
胡捷, 黄俊仕, 李红, 文建萍, 肖志峰, 黎波. 基于LES方法的新型涡激振动风能采集器俘能特性分析[J]. 太阳能学报. 2024, 45(5): 70-76 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0058
Hu Jie, Huang Junshi, Li Hong, Wen Jianping, Xiao Zhifeng, Li Bo. RESEARCH ON VORTEX-INDUCED VIBRATION AIRFLOW ENERGY HARVESTING PROPERTIES BASED ON LES METHOD[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 70-76 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0058
中图分类号: S24   

参考文献

[1] 万雪芬, 郑涛, 崔剑, 等. 中小型规模智慧农业物联网终端节点设计[J]. 农业工程学报, 2020, 36(13): 306-314.
WAN X F, ZHENG T, CUI J, et al.Design of terminal nodes for small and medium scale intelligent agriculture internet of things[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 306-314.
[2] 常晓敏, 魏科宇, 左广宇, 等. 基于管道水流发电的农业物联网供电系统设计[J]. 中国农村水利水电, 2021(12): 144-149.
CHANG X M, WEI K Y, ZUO G Y, et al.Design of agricultural internet of things power supply system based on pipe flow generation[J]. China rural water and hydropower, 2021(12): 144-149.
[3] 王淑云, 朱雅娜, 阚君武, 等. 旋磁激励式预弯梁压电俘能器建模仿真与试验[J]. 机械工程学报, 2020, 56(14): 224-230.
WANG S Y, ZHU Y N, KAN J W, et al.Prebending-cantilever piezo-harvester excited by rotary magnet[J]. Journal of mechanical engineering, 2020, 56(14): 224-230.
[4] 王淑云, 朱雅娜, 阚君武, 等. 限幅激励式压电发电机性能分析与试验[J]. 机械工程学报, 2020, 56(20): 206-213.
WANG S Y, ZHU Y N, KAN J W, et al.Structure and performance of piezoelectric generator with amplitude limit[J]. Journal of mechanical engineering, 2020, 56(20): 206-213.
[5] LAI Z H, WANG S B, ZHU L K, et al.A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting[J]. Mechanical systems and signal processing, 2021, 150: 107212.
[6] SUN W, SEOK J.Novel galloping-based piezoelectric energy harvester adaptable to external wind velocity[J]. Mechanical systems and signal processing, 2021, 152: 107477.
[7] QURESHİ F U Q, MUHTAROĞLU A, TUNCAY K. Sensitivity analysis for piezoelectric energy harvester and bluff body design toward underwater pipeline monitoring[J]. Journal of energy systems, 2017, 1(1): 10-20.
[8] WILLIAMSON C H K. Evolution of a single wake behind a pair of bluff bodies[J]. Journal of fluid mechanics, 1985, 159: 1.
[9] 林凌霄, 陈威, 林永水, 等. 并列双圆柱绕流特性和互扰效应数值模拟研究[J]. 应用力学学报, 2021, 38(2): 844-850.
LIN L X, CHEN W, LIN Y S, et al.Numerical simulation of the characteristics and interaction of flow around two side-by-side arranged circular cylinders[J]. Chinese journal of applied mechanics, 2021, 38(2): 844-850.
[10] 庞建华, 宗智, 周力, 等. 并列双圆柱绕流中宽窄尾流的识别方法[J]. 中国舰船研究, 2016, 11(3): 37-42.
PANG J H, ZONG Z, ZHOU L, et al.A method for distinguishing WW and NW in the flow around two side by side circular cylinders[J]. Chinese journal of ship research, 2016, 11(3): 37-42.
[11] PAN F F, XU Z K, JIN L, et al.Designed simulation and experiment of a piezoelectric energy harvesting system based on vortex-induced vibration[J]. IEEE transactions on industry applications, 2017, 53(4): 3890-3897.
[12] 王军雷, 冉景煜, 丁林, 等. 基于涡激振动的压电能量收集特性数值研究[J]. 工程热物理学报, 2015, 36(2): 330-334.
WANG J L, RAN J Y, DING L, et al.Numerical Investigation of piezoelectric energy harvester characteristics based on vortex-induced vibration[J]. Journal of engineering thermophysics, 2015, 36(2): 330-334.
[13] MEHMOOD A, ABDELKEFI A, HAJJ M R, et al.Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder[J]. Journal of sound and vibration, 2013, 332(19): 4656-4667.
[14] MORSE T L, WILLIAMSON C H K. Steady, unsteady and transient vortex-induced vibration predicted using controlled motion data[J]. Journal of fluid mechanics, 2010, 649: 429-451.
[15] PAN F F, XU Z K, JIN L, et al.Designed simulation and experiment of a piezoelectric energy harvesting system based on flow around blunt bodies[C]//2015 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya, Thailand, 2016: 2104-2107.

基金

国家自然科学基金(32260436)

PDF(2998 KB)

Accesses

Citation

Detail

段落导航
相关文章

/