漂浮式海上风力机自适应超螺旋滑模桨距控制

韩耀振, 杨文祥, 马荣琳, 侯明冬, 杨仁明, 王常顺

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 62-69.

PDF(2596 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2596 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 62-69. DOI: 10.19912/j.0254-0096.tynxb.2023-0061

漂浮式海上风力机自适应超螺旋滑模桨距控制

  • 韩耀振1, 杨文祥1, 马荣琳2, 侯明冬1, 杨仁明1, 王常顺1
作者信息 +

ADAPTIVE SUPER TWISTING SLIDING MODE PITCH CONTROL OF FLOATING OFFSHORE WIND TURBINE

  • Han Yaozhen1, Yang Wenxiang1, Ma Ronglin2, Hou Mingdong1, Yang Renming1, Wang Changshun1
Author information +
文章历史 +

摘要

针对额定风速以上漂浮式海上风力机系统的输出功率稳定、浮式平台运动和疲劳载荷抑制任务目标,考虑系统非线性和模型参数摄动及风浪扰动,提出一种基于自适应超螺旋二阶滑模和干扰观测补偿的桨距角鲁棒控制方案。首先,实现漂浮式海上风力机的仿射非线性不确定系统建模;其次,构建考虑风力机额定转速和平台纵摇的滑模函数,设计控制增益自适应调节的超螺旋二阶滑模控制律;再次,采用干扰观测器补偿模型参数摄动和风浪扰动不确定项;最后,基于FAST与Matlab/Simulink在不同风浪环境下进行仿真,验证所提方案有效性和优越性。时域和频域仿真结果表明,与传统比例积分控制方案相比,所提方案对稳定风力机系统输出功率、抑制浮式平台运动及减少塔基载荷具有更好的控制效果。

Abstract

Considering system nonlinearity, model parameter perturbation and wind wave disturbance, a robust pitch control scheme based on adaptive super twisting second order sliding mode and disturbance observation compensation is proposed for the objectives of output power stabilization, floating platform motion and fatigue load suppression of floating offshore wind turbine system above rated wind speed. Firstly, the affine nonlinear uncertain system modeling of floating offshore wind turbine is implemented. Secondly, a sliding mode function considering the rated speed of the wind turbine and the pitch of the platform is constructed, and a super twisting second order sliding mode control law with adaptive control gain is designed. Thirdly, disturbance observer is used to compensate the model parameter perturbation and wind wave disturbance uncertainty. Finally, the effectiveness and superiority of the proposed scheme is verified based on FAST and Matlab/Simulink under different wind and wave environment conditions. The time domain and frequency domain simulation results show that the proposed scheme has better control effect on stabilizing the output power, suppressing the floating platform motion and reducing the tower base load, compared with the traditional proportional integral control scheme.

关键词

海上风力机 / 滑模控制 / 功率控制 / 干扰观测器 / 平台运动抑制

Key words

offshore wind turbines / sliding mode control / power control / disturbance observer / platform motion suppression

引用本文

导出引用
韩耀振, 杨文祥, 马荣琳, 侯明冬, 杨仁明, 王常顺. 漂浮式海上风力机自适应超螺旋滑模桨距控制[J]. 太阳能学报. 2024, 45(5): 62-69 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0061
Han Yaozhen, Yang Wenxiang, Ma Ronglin, Hou Mingdong, Yang Renming, Wang Changshun. ADAPTIVE SUPER TWISTING SLIDING MODE PITCH CONTROL OF FLOATING OFFSHORE WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 62-69 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0061
中图分类号: TK8   

参考文献

[1] MICALLEF D, REZAEIHA A.Floating offshore wind turbine aerodynamics: trends and future challenges[J]. Renewable and sustainable energy reviews, 2021, 152: 111696.
[2] JAVIER L Q, EIDER R, JOSU J, et al.Review of control technologies for floating offshore wind turbines[J]. Renewable and sustainable energy reviews, 2022, 167: 1-15.
[3] HA K, TRUONG H V A, DANG T D, et al. Recent control technologies for floating offshore wind energy system: a review[J]. International journal of precision engineering and manufacturing-green technology, 2021, 8(1): 281-301.
[4] 黄国燕, 朱敏. 基于状态空间的漂浮式风电机组控制策略研究[J]. 太阳能学报, 2021, 42(6): 337-341.
HUANG G Y, ZHU M.Control stratege research of floating wind turbines based on state-space[J]. Acta energiae solaris sinica, 2021, 42(6): 337-341.
[5] SARKAR S, FITZGERALD B, BASU B.Individual blade pitch control of floating offshore wind turbines for load mitigation and power regulation[J]. IEEE transactions on control systems technology, 2021, 29(1): 305-315.
[6] ALI SHAH S A, GAO B T, AHMED N, et al. Advanced robust control techniques for the stabilization of translational oscillator with rotational actuator based barge-type OFWT[J]. Proceedings of the Institution of Mechanical Engineers, part M: journal of engineering for the maritime environment, 2021, 235(2): 327-343.
[7] MOUSAVI Y, BEVAN G, KUCUKDEMIRAL I B, et al.Sliding mode control of wind energy conversion systems: trends and applications[J]. Renewable and sustainable energy reviews, 2022, 167: 112734.
[8] 马磊明, 肖玲斐, 姜斌. 基于风速估计的风力机状态反馈滑模容错控制[J]. 控制理论与应用, 2022, 39(3): 480-490.
MA L M, XIAO L F, JIANG B.State feedback sliding mode fault tolerant control of wind turbine based on wind speed estimation[J]. Control theory & applications, 2022, 39(3): 480-490.
[9] HAN Y Z, LIU X J.Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems[J]. ISA transactions, 2016, 62: 193-201.
[10] LIU X J, WANG C C, HAN Y Z.Second-order sliding mode control of DFIG based variable speed wind turbine for maximum power point tracking[J]. Acta automatica sinica, 2017(8): 148-156.
[11] ZHANG C, PLESTAN F.Adaptive sliding mode control of floating offshore wind turbine equipped by permanent magnet synchronous generator[J]. Wind energy, 2021, 24(7): 754-769.
[12] ZHANG C, PLESTAN F.Individual/collective blade pitch control of floating wind turbine based on adaptive second order sliding mode[J]. Ocean engineering, 2021, 228: 108897.
[13] SARIYILDIZ E, OBOE R, OHNISHI K.Disturbance observer-based robust control and its applications: 35th anniversary overview[J]. IEEE transactions on industrial electronics, 2020, 67(3): 2042-2053.
[14] 庄园, 徐天奇, 滕昊, 等. 基于干扰观测器的含风电互联电网频率稳定控制[J]. 科学技术与工程, 2021, 21(5): 1840-1848.
ZHUANG Y, XU T Q, TENG H, et al.Frequency stability control of interconnected power system with wind power based on disturbance observer[J]. Science technology and engineering, 2021, 21(5): 1840-1848.
[15] 王云龙, 王泽政, 王永富, 等. 带有干扰观测器的线控转向系统复合自适应神经网络控制[J]. 控制理论与应用, 2021, 38(4): 433-443.
WANG Y L, WANG Z Z, WANG Y F, et al.Composite adaptive neural network control for steer-by-wire systems with disturbance observer[J]. Control theory & applications, 2021, 38(4): 433-443.
[16] HOU Q K, DING S H, YU X H.Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer[J]. IEEE transactions on energy conversion, 2021, 36(4): 2591-2599.
[17] 刘青松, 丁勤卫, 李春, 等. 极限海况下Barge平台漂浮式风电场动态响应[J]. 太阳能学报, 2021, 42(7): 398-407.
LIU Q S, DING Q W, LI C, et al.Dynamic response of barge platform floating wind farm under extreme sea conditions[J]. Acta energiae solaris sinica, 2021, 42(7): 398-407.
[18] 顾伟, 陈载宇, 殷明慧, 等. 考虑不变桨风速范围的风电机组有功功率控制[J]. 电力系统自动化, 2023, 47(3): 40-48.
GU W, CHEN Z Y, YIN M H, et al.Active power control of wind turbines considering wind speed range of non-pitch regulation[J]. Automation of electric power systems, 2023, 47(3): 40-48.
[19] ZARAGOZA J, POU J, ARIAS A, et al.Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system[J]. Renewable energy, 2011, 36(5): 1421-1430.
[20] CHAABAN R.Nrel 5-MW reference turbine-cp, cq, ct coefficients[R]. NREL’s National Wind Technology Center, 2005.
[21] COLOMBO L, CORRADINI M L, IPPOLITI G, et al.Pitch angle control of a wind turbine operating above the rated wind speed: a sliding mode control approach[J]. ISA transactions, 2020, 96: 95-102.
[22] SHTESSEL Y, TALEB M, PLESTAN F.A novel adaptive-gain supertwisting sliding mode controller: methodology and application[J]. Automatica, 2012, 48(5): 759-769.

基金

国家自然科学基金(61803230); 山东省高等学校青创科技支持计划(2019KJN023)

PDF(2596 KB)

Accesses

Citation

Detail

段落导航
相关文章

/