基于改进相似日优化HBA-BiLSTM-KELM的光伏发电功率预测

李超然, 潘鹏程, 杨伟荣, 徐恒山, 魏业文

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 508-516.

PDF(2072 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2072 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 508-516. DOI: 10.19912/j.0254-0096.tynxb.2023-0079

基于改进相似日优化HBA-BiLSTM-KELM的光伏发电功率预测

  • 李超然1,2, 潘鹏程1,2, 杨伟荣3, 徐恒山1,2, 魏业文1,2
作者信息 +

RESEARCH ON PV SYSTEM POWER PREDICTION BASED ON IMPROVED SIMILAR DAY AND HBA-BiLSTM-KELM NEURAL NETWORK

  • Li Chaoran1,2, Pan Pengcheng1,2, Yang Weirong3, Xu Hengshan1,2, Wei Yewen1,2
Author information +
文章历史 +

摘要

为提高光伏发电系统输出功率的预测精度,提出基于改进相似日和蜜獾算法(HBA)优化改进双向长短期记忆神经网络(BiLSTM)与核极限学习机(KELM)的光伏发电预测方法。首先,使用CRITIC权重法动态计算各气象因素对光伏发电功率的影响权重,通过逐时刻计算历史日和待预测日的加权欧氏距离确定相似日。其次,使用HBA优化BiLSTM和KELM模型参数,然后使用HBA参数优化后的BiLSTM进行功率预测,优化后的 KELM进行误差优化预测。最后将初步预测功率和误差预测功率相加得到最终预测功率。仿真结果表明:该模型平均绝对百分比误差为0.91%,具有较高的光伏系统输出功率预测精度。

Abstract

In order to improve the output power prediction accuracy of PV generation system, this paper proposed a prediction model based on improved similar days and honey badger algorithm to improve bidirectional long-short term memory neural network and kernel extreme learning machine. Firstly, The CRITIC weight method is used to dynamically calculate the influence weight of each meteorological factor on photovoltaic power generation. The similar days are determined by calculating the weighted Euclidean distance between the historical days and the predicted days. Secondly, HBA is used to optimize the parameters of BiLSTM and KELM models, and then the BiLSTM optimized by HBA parameters is used for power prediction, and the optimized KELM is used for error optimization prediction. Finally, the preliminary prediction power and the error prediction power are added to obtain the final prediction power. The simulation results show that the average absolute percentage error of the model is 0.91%, which has high prediction accuracy of output power of photovoltaic system.

关键词

光伏发电 / 功率预测 / 神经网络 / 核极限学习机 / 蜜獾算法

Key words

PV power generation / power forecasting / neural network / kernel extreme learning machine / honey badger algorithm

引用本文

导出引用
李超然, 潘鹏程, 杨伟荣, 徐恒山, 魏业文. 基于改进相似日优化HBA-BiLSTM-KELM的光伏发电功率预测[J]. 太阳能学报. 2024, 45(5): 508-516 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0079
Li Chaoran, Pan Pengcheng, Yang Weirong, Xu Hengshan, Wei Yewen. RESEARCH ON PV SYSTEM POWER PREDICTION BASED ON IMPROVED SIMILAR DAY AND HBA-BiLSTM-KELM NEURAL NETWORK[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 508-516 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0079
中图分类号: TM615   

参考文献

[1] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[2] 罗建春, 晁勤, 罗洪, 等. 基于LVQ-GA-BP神经网络光伏电站出力短期预测[J]. 电力系统保护与控制, 2014, 42(13): 89-94.
LUO J C, CHAO Q, LUO H, et al.PV short-term output forecasting based on LVQ-GA-BP neural network[J]. Power system protection and control, 2014, 42(13): 89-94.
[3] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.
[4] 耿博, 高贞彦, 白恒远, 等. 结合相似日GA-BP神经网络的光伏发电预测[J]. 电力系统及其自动化学报, 2017, 29(6): 118-123.
GENG B, GAO Z Y, BAI H Y, et al.PV generation forecasting combined with similar days and GA-BP neural network[J]. Proceedings of the CSU-EPSA, 2017, 29(6): 118-123.
[5] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151.
GONG Y F, LU Z X, QIAO Y, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems, 2016, 40(4): 140-151.
[6] VOYANT C, PAOLI C, MUSELLI M, et al.Multi-horizon solar radiation forecasting for Mediterranean locations using time series models[J]. Renewable and sustainable energy reviews, 2013, 28: 44-52.
[7] LIU L Y,LIU D R,SUN Q,et al.Forecasting power output of photovoltaic system using a BP network method[J]. Energy procedia, 2017, 142: 780-786.
[8] CHEN B, LI J H.Combined probabilistic forecasting method for photovoltaic power using an improved Markov chain[J]. IET generation, transmission & distribution, 2019, 13(19): 4364-4373.
[9] JANG H S, BAE K Y, PARK H S, et al.Solar power prediction based on satellite images and support vector machine[J]. IEEE transactions on sustainable energy, 2016, 7(3): 1255-1263.
[10] 张慧娥, 刘大贵, 朱婷婷, 等. 基于相似日和动量法优化BP神经网络的光伏短期功率预测研究[J]. 智慧电力, 2021, 49(6): 46-52.
ZHANG H E, LIU D G, ZHU T T, et al.Short-term PV power prediction based on BP neural networkoptimized by similar daily and momentum method[J]. Smart power, 2021, 49(6): 46-52.
[11] 乔路丽, 方诗琦, 赵庭锐, 等. 基于相似日和IGA-BP的光伏发电功率预测方法研究[J]. 电网与清洁能源, 2022, 38(1): 128-134.
QIAO L L, FANG S Q, ZHAO T R, et al.A study on the forecasting method of photovoltaic power generation based on similar day and IGA-BP[J]. Power system and clean energy, 2022, 38(1): 128-134.
[12] 王英立, 陶帅, 候晓晓, 等. 基于MIV分析的GA-BP神经网络光伏短期发电预测[J]. 太阳能学报, 2020, 41(8): 236-242.
WANG Y L, TAO S, HOU X X, et al.GA-BP neural network photovoltaic power generation short-term forecast based on MIV analysis[J]. Acta energiae solaris sinica, 2020, 41(8): 236-242.
[13] 陈智雨, 陆金桂. 基于ACO-BP神经网络的光伏系统发电功率预测[J]. 机械制造与自动化, 2020, 49(1): 173-175, 187.
CHEN Z Y, LU J G.Photovoltaic System generating efficiency forecasting based on ACO-BP neural network[J]. Machine building & automation, 2020, 49(1): 173-175, 187.
[14] DIAKOULAKI D, MAVROTAS G, PAPAYANNAKIS L.Determining objective weights in multiple criteria problems: the critic method[J]. Computers & operations research, 1995, 22(7): 763-770.
[15] 刘瑞元. 加权欧氏距离及其应用[J]. 数理统计与管理, 2002, 21(5): 17-19.
LIU R Y.Euclid distance with weight and its applications[J]. Application of statistics and management, 2002, 21(5): 17-19.
[16] 姜东良, 李天昊, 刘文浩. 基于相似日和SAE-DBiLSTM模型的短期电力负荷预测[J]. 电气工程学报, 2022, 17(4): 240-249.
JIANG D L, LI T H, LIU W H.Short-term power load forecasting using similar day and SAE-DBiLSTM model[J]. Journal of electrical engineering, 2022, 17(4): 240-249.
[17] 张洁, 郝倩男. 基于烟花算法优化BP神经网络的光伏功率预测[J]. 计算机技术与发展, 2021, 31(10): 146-153.
ZHANG J, HAO Q N.Forecast of photovoltaic power generation based on firework algorithm optimized BP neural network[J]. Computer technology and development, 2021, 31(10): 146-153.
[18] 王小凯, 朱小文. 计量检定中3种判别和剔除异常值的统计方法[J]. 中国测试, 2018, 44(S1): 41-44.
WANG X K, ZHU X W.Three statistical methods for distinguishing and eliminating outliers in metrological verification[J]. China measurement & test, 2018, 44(S1): 41-44.
[19] 张世强, 吕杰能, 蒋峥, 等. 关于相关系数的探讨[J]. 数学的实践与认识, 2009, 39(19): 102-107.
ZHANG S Q, LYU J N, JIANG Z, et al.Study of the correlation coefficients in mathematical statistics[J]. Mathematics in practice and theory, 2009, 39(19): 102-107.
[20] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6, 26.
YANG L, WU Y X, WANG J L, et al.Research on recurrent neural network[J]. Journal of computer applications, 2018, 38(S2): 1-6, 26.
[21] ZHOU N R, ZHOU Y, GONG L H, et al.Accurate prediction of photovoltaic power output based on long short-term memory network[J]. IET optoelectronics, 2020, 14(6): 399-405.
[22] 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48(11): 4372-4388.
WANG K Y, DU H D, JIA R, et al.Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J]. High voltage engineering, 2022, 48(11): 4372-4388.
[23] 商立群, 李洪波, 侯亚东, 等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2022, 50(21): 138-148.
SHANG L Q, LI H B, HOU Y D, et al.Short-term photovoltaic power generation prediction based on VMD-ISSA-KELM[J]. Power system protection and control, 2022, 50(21): 138-148.
[24] HASHIM F A, HOUSSEIN E H, HUSSAIN K, et al.Honey Badger Algorithm: new metaheuristic algorithm for solving optimization problems[J]. Mathematics and computers in simulation, 2022, 192: 84-110.
[25] 凌立文, 张大斌. 组合预测模型构建方法及其应用研究综述[J]. 统计与决策, 2019, 35(1): 18-23.
LING L W, ZHANG D B.A review of construction and application of combination forecast model[J]. Statistics & decision, 2019, 35(1): 18-23.
[26] 王逸文, 王维莉. 基于LSTM-RELM组合模型的电商GMV预测研究[J].计算机工程与应用, 2023, 59(10): 321-327.
WANG Y W, WANG W L.Research on GMV prediction of E-commerce based on LSTM-RELM combination model[J]. Computer engineering and applications, 2023,59(10): 321-327.
[27] 周雪, 鲍刚, 龚顺琦. 基于参数优化的KELM和GRU的短期电力负荷预测[J]. 电子器件, 2022, 45(4): 931-938.
ZHOU X, BAO G, GONG S Q.Short-term power load forecasting based on GRU and parameter optimized KELM[J]. Chinese journal of electron devices, 2022, 45(4): 931-938.

基金

国家水运安全工程技术研究中心开放基金(B2022002); 宜昌市自然科学基金(A22-3-008)

PDF(2072 KB)

Accesses

Citation

Detail

段落导航
相关文章

/