风电场道路加宽设计的运动学理论模型

王煜东, 王俊杰, 沈璐

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 44-50.

PDF(1933 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1933 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 44-50. DOI: 10.19912/j.0254-0096.tynxb.2023-0085

风电场道路加宽设计的运动学理论模型

  • 王煜东1,2, 王俊杰2, 沈璐1,2
作者信息 +

KINEMATIC THEORETICAL MODEL FOR ROAD WIDENING DESIGN IN WIND FARMS

  • Wang Yudong1,2, Wang Junjie2, Shen Lu1,2
Author information +
文章历史 +

摘要

针对现有风电场道路加宽设计取值较大且有时不满足运输需求的问题,该文以理论力学中的刚体运动学原理为基础,利用速度投影定理,结合设计速度、圆曲线半径、路线转角值等因素,构建风电场道路加宽设计理论模型;基于该模型,结合风电场常用运输车辆参数,定量分析圆曲线半径、转角值、车辆尺寸对加宽值的影响;并与现行技术标准中的加宽参数进行对比分析,结果表明基于运动学理论加宽设计模型能有效减小道路加宽值。该文研究成果旨在为风电场道路及具有类似特殊运输需求的道路设计提供理论依据。

Abstract

In order to solve the problem that the value of current wind farm road widening design is too large and sometimes does not meet transportation requirements, it is based on the principles of rigid body kinematics in theoretical mechanics, uses the velocity projection theorem, combines with design speed, circular curve radius, route turning angle, and other factors to construct a theoretical model for wind farm road widening design. Based on this model and combined with commonly used transportation vehicle parameters in wind farms, this paper quantitatively analyzes the influence of circular curve radius, corner value, and vehicle size on the widening value. The widening parameters in current technical standards are compared and analyzed. The results show that the widening design model based on kinematics theory can effectively reduce the road widening value. The research results of this paper aim to provide theoretical basis for the design of wind farm roads and roads with similar special transportation needs.

关键词

风电场 / 运动学 / 加宽 / 速度投影原理 / 转角值

Key words

wind farms / kinematics / widening(transportation arteries) / velocity projection principle / turning angle value

引用本文

导出引用
王煜东, 王俊杰, 沈璐. 风电场道路加宽设计的运动学理论模型[J]. 太阳能学报. 2024, 45(5): 44-50 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0085
Wang Yudong, Wang Junjie, Shen Lu. KINEMATIC THEORETICAL MODEL FOR ROAD WIDENING DESIGN IN WIND FARMS[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 44-50 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0085
中图分类号: U412   

参考文献

[1] 许昌, 陈丹丹, 韩星星, 等. 复杂地形风电场一体化优化设计研究[J]. 太阳能学报, 2017, 38(12): 3368-3375.
XU C, CHEN D D, HAN X X, et al.Study of integrated optimization design of wind farm in complex terrain[J]. Acta energiae solaris sinica, 2017, 38(12): 3368-3375.
[2] 方君, 王立忠, 洪义, 等. 泥石流对山区风电场冲击防治的影响研究[J]. 太阳能学报, 2022, 43(2): 357-364.
FANG J, WANG L Z, HONG Y, et al.Study on impact mitigation of debris flow to mountainous wind farms[J]. Acta energiae solaris sinica, 2022, 43(2): 357-364.
[3] AASHTO GDHS 6—2011. American Association of State Highway and Transportation Officials (2011), A policy on geometric design of highways and streets[S].
[4] EQUR1110213C, ICTAAL:instruction surles conditions techniques d’aménagement des autoroutes de Iiaison, 2000[S].
[5] AGRD03-16. Guide to road design part 3: geometric design[S].
[6] Highway agency. Highway link design (TD9/93)[S]. UK, 2002.
[7] JTG D20—2017, 公路路线设计规范[S].
JTG D20—2017, Design specification for highway alignment[S].
[8] 姚昕亮. 风电场道路设计研究[D]. 杭州: 浙江大学, 2013.
YAO X L.Study on road design of the wind farm[D]. Hangzhou: Zhejiang University, 2013.
[9] 郭迎福, 刘亦, 刘厚才, 等. 风机叶片山地运输车辆转弯半径与道路占用分析[J]. 公路与汽运, 2013(4): 11-14.
GUO Y F, LIU Y, LIU H C, et al.Analysis of turning radius and road occupation of mountain transport vehicles with fan blades[J]. Highways & automotive applications, 2013(4): 11-14.
[10] 陈康东, 李晓梅. 丘陵地区风电场道路路线设计及要点分析[J]. 太阳能, 2013(24): 57-60.
CHEN K D, LI X M.Road route design and key points analysis of wind farm in hilly area[J]. Solar energy, 2013(24): 57-60.
[11] 杨永红, 邓卓. 满足铰接列车安全通行的平曲线指标研究[J]. 华南理工大学学报(自然科学版), 2019, 47(6): 87-93.
YANG Y H, DENG Z.Study on horizontal curve index satisfying the safe passing of articulated train[J]. Journal of South China University of Technology (natural science edition), 2019, 47(6): 87-93.
[12] 赵一鸣. 山地风电场场内道路圆曲线半径和路基宽度设计指标研究[J]. 公路工程, 2018, 43(2): 124-128.
ZHAO Y M.Study on design index of circle curve radius and pavement width in mountain wind farm[J]. Highway engineering, 2018, 43(2): 124-128.
[13] 马开志, 周向阳. 山地风电场运输道路设计要点分析[J]. 南方能源建设, 2018, 5(增刊1): 172-176.
MA K Z, ZHOU X Y.Research on the road route design of the wind farm in mountainous area[J]. Southern energy construction, 2018, 5(S1): 172-176.
[14] 曾诗晴, 谢潇, 张越, 等. 多维地形环境与风机参数约束的风电场道路优化设计方法[J]. 地理信息世界, 2018, 25(3): 54-59.
ZENG S Q, XIE X, ZHANG Y, et al.Multi dimensional terrain environment and fan parameter constraint wind farm road optimal design method[J]. Geomatics world, 2018, 25(3): 54-59.
[15] NB/T 10209—2019, 风电场工程道路设计规范[S].
NB/T 10209—2019, Code for design of road for wind power projects[S].
[16] 哈尔滨工业大学理论力学教研室. 理论力学-Ⅱ[M]. 8版. 北京: 高等教育出版社, 2016.
Theoretical mechanics teaching and research office of Harbin university of technology. Theoretical mechanics-Ⅱ[M]. 8th edition. Beijing: Higher Education Press, 2016.

基金

大连市科技创新基金项目(2021JJ11CG001); 辽宁省教育厅2021年度科学研究经费面上项目(LJKZ0719); 大连海洋大学第三届“蔚蓝英才工程”资助项目(大海大校发[2018]156号)

PDF(1933 KB)

Accesses

Citation

Detail

段落导航
相关文章

/