基于鲁棒稀疏宽度学习系统的短期风电功率预测

康逸群, 刘厦, 雷兢

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 32-43.

PDF(2922 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2922 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 32-43. DOI: 10.19912/j.0254-0096.tynxb.2023-0089

基于鲁棒稀疏宽度学习系统的短期风电功率预测

  • 康逸群1, 刘厦1, 雷兢2
作者信息 +

SHORT-TERM WIND POWER PREDICTION BASED ON RUBUST SPARSITY BROAD LEARNING SYSTEM

  • Kang Yiqun1, Liu Sha1, Lei Jing2
Author information +
文章历史 +

摘要

为改善预测质量,提出一种基于鲁棒稀疏宽度学习系统(RSBLS)的预测方法。基于正则法将模型训练转化为一个difference-of-convex functions优化问题,利用L1范数作为数据忠诚项以提高估计的鲁棒性,将L1-2范数集成到目标函数中确保输出权的稀疏性以提升模型性能,并提出一种融合half-quadratic splitting算法优势的数值方法有效求解该训练模型。基于绝对误差、相对误差、平均绝对误差、均方根误差、平均绝对百分误差、算法稳定性、预测误差改进百分比、灰色关联分析和DM检验等准则进行实验分析,结果表明新算法的预测质量优于流行的预测算法,并具有较好的鲁棒性,为风功率预测提出一种可行的新方法。

Abstract

In order to enhance the prediction accuracy, the robust sparsity broad learning system (RSBLS) prediction method is proposed. The model training is transformed into a difference-of-convex functions optimization problem based on the regularization method. The robustness of the estimation is improved by using the L1 norm as the data fidelity term. The performance of the model is enhanced by integrating the L1-2 norm into the objective function to ensure the sparsity of the output weights. The numerical method that integrates the advantage of the half-quadratic splitting algorithm is proposed to solve the training model efficiently. Experimental analysis based on the criteria of absolute error, relative error, mean absolute error, root mean square error, mean absolute percentage error, algorithm stability, percentage improvement of the performance, gray correlation analysis and DM test shows that the prediction quality of the new algorithm is better than popular prediction algorithms and has better robustness, which provides a new method for wind power prediction.

关键词

风功率预测 / 宽度学习系统 / 正则化 / 稀疏性优化

Key words

wind power prediction / broad learning system / regularization / sparsity optimization

引用本文

导出引用
康逸群, 刘厦, 雷兢. 基于鲁棒稀疏宽度学习系统的短期风电功率预测[J]. 太阳能学报. 2024, 45(5): 32-43 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0089
Kang Yiqun, Liu Sha, Lei Jing. SHORT-TERM WIND POWER PREDICTION BASED ON RUBUST SPARSITY BROAD LEARNING SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 32-43 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0089
中图分类号: TM614   

参考文献

[1] 符杨, 任子旭, 魏书荣, 等. 基于改进LSTM-TCN模型的海上风电超短期功率预测[J]. 中国电机工程学报, 2022, 42(12): 4292-4303.
FU Y, REN Z X, WEI S R, et al.Ultra-short-term power prediction of offshore wind power based on improved LSTM-TCN model[J]. Proceedings of the CSEE, 2022, 42(12): 4292-4303.
[2] XU Q Y, HE D W, ZHANG N, et al.A short-term wind power forecasting approach with adjustment of numerical weather prediction input by data mining[J]. IEEE transactions on sustainable energy, 2015, 6(4): 1283-1291.
[3] STATHOPOULOS C, KAPERONI A, GALANIS G, et al.Wind power prediction based on numerical and statistical models[J]. Journal of wind engineering and industrial aerodynamics, 2013, 112: 25-38.
[4] ZHANG Y, LI Y T, ZHANG G Y.Short-term wind power forecasting approach based on Seq2Seq model using NWP data[J]. Energy, 2020, 213: 118371.
[5] 李丽, 叶林. 基于改进持续法的短期风电功率预测[J]. 农业工程学报, 2010, 26(12): 182-187.
LI L, YE L.Short-term wind power forecasting based on an improved persistence approach[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12): 182-187.
[6] KORPRASERTSAK N, LEEPHAKPREEDA T.Robust short-term prediction of wind power generation under uncertainty via statistical interpretation of multiple forecasting models[J]. Energy, 2019, 180: 387-397.
[7] HODGE B M, ZEILER A, BROOKS D, et al.Improved wind power forecasting with ARIMA models[M]. Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2011: 1789-1793.
[8] HONG Y Y, CHANG H L, CHIU C S.Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs[J]. Energy, 2010, 35(9): 3870-3876.
[9] LAHOUAR A, BEN HADJ SLAMA J. Hour-ahead wind power forecast based on random forests[J]. Renewable energy, 2017, 109: 529-541.
[10] LI L L, ZHAO X, TSENG M L, et al.Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm[J]. Journal of cleaner production, 2020, 242: 118447.
[11] JIN H P, SHI L X, CHEN X G, et al.Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models[J]. Renewable energy, 2021, 174: 1-18.
[12] YILDIZ C, ACIKGOZ H, KORKMAZ D, et al.An improved residual-based convolutional neural network for very short-term wind power forecasting[J]. Energy conversion and management, 2021, 228: 113731.
[13] HU S, XIANG Y, HUO D, et al.An improved deep belief network based hybrid forecasting method for wind power[J]. Energy, 2021, 224: 120185.
[14] LIU X, ZHOU J, QIAN H M.Short-term wind power forecasting by stacked recurrent neural networks with parametric sine activation function[J]. Electric power systems research, 2021, 192: 107011.
[15] 张淑清, 杨振宁, 姜安琦, 等. 基于EN-SKPCA降维和FPA优化LSTMNN的短期风电功率预测[J]. 太阳能学报, 2022, 43(6): 204-211.
ZHANG S Q, YANG Z N, JIANG A Q, et al.Short term wind power prediction based on EN-SKPCA dimensionality reduction and FPA optimizing LSTMNN[J]. Acta energiae solaris sinica, 2022, 43(6): 204-211.
[16] PHILIP CHEN C L, LIU Z L. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE transactions on neural networks and learning systems, 2018, 29(1): 10-24.
[17] PHILIP CHEN C L, LIU Z L. Broad learning system: a new learning paradigm and system without going deep[C]//2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC). Hefei, China, 2017: 1271-1276.
[18] 崔江, 冯赛, 张卓然, 等. 基于BLS的无刷发电机旋转整流器特征提取技术研究[J]. 中国电机工程学报, 2020, 40(12): 4004-4013.
CUI J, FENG S, ZHANG Z R, et al.Research on feature extraction technology of brushless generator rotating rectifier based on BLS[J]. Proceedings of the CSEE, 2020, 40(12): 4004-4013.
[19] FENG S B, REN W J, HAN M, et al.Robust manifold broad learning system for large-scale noisy chaotic time series prediction: a perturbation perspective[J]. Neural networks, 2019, 117: 179-190.
[20] HAN M, LI W J, FENG S B, et al.Maximum information exploitation using broad learning system for large-scale chaotic time-series prediction[J]. IEEE transactions on neural networks and learning systems, 2021, 32(6): 2320-2329.
[21] JI T Y, WANG J, LI M S, et al.Short-term wind power forecast based on chaotic analysis and multivariate phase space reconstruction[J]. Energy conversion and management, 2022, 254: 115196.
[22] 高桂革, 原阔, 曾宪文, 等. 基于改进CEEMD-CS- ELM的短期风速预测[J]. 太阳能学报, 2021, 42(7): 284-289.
GAO G G, YUAN K, ZENG X W, et al.Short-term wind speed prediction based on improved CEEMD-CS-ELM[J]. Acta energiae solaris sinica, 2021, 42(7): 284-289.
[23] SUN W, WANG Y W.Short-term wind speed forecasting based on fast ensemble empirical mode decomposition, phase space reconstruction, sample entropy and improved back-propagation neural network[J]. Energy conversion and management, 2018, 157: 1-12.
[24] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
XIE L R, WANG B, BAO H Y, et al.Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta energiae solaris sinica, 2021, 42(7): 290-296.
[25] GAO R B, DU L, SUGANTHAN P N, et al.Random vector functional link neural network based ensemble deep learning for short-term load forecasting[J]. Expert systems with applications, 2022, 206: 117784.
[26] LOU Y F, YAN M.Fast L1-L2 minimization via a proximal operator[J]. Journal of scientific computing, 2018, 74(2): 767-785.
[27] LI Z N, YANG Z Y, ZHAO H L, et al.Direct-optimization -based DC dictionary learning with the MCP regularizer[J]. IEEE transactions on neural networks and learning systems, 2023, 34(7): 3568-3579.
[28] PHAN D N, LE H M, LE THI H A. Accelerated difference of convex functions algorithm and its application to sparse binary logistic regression[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 2018: 1369-1375.
[29] LE THI H A, DINH T P. DC programming and DCA: thirty years of developments[J]. Mathematical programming: series A and B, 2018, 169(1): 5-68.
[30] BAO J Q, LUO L, ZHANG Y, et al.Half quadratic splitting method combined with convolution neural network for blind image deblurring[J]. Multimedia tools and applications, 2021, 80(3): 3489-3504.
[31] SUN Y B, YANG Y, LIU Q S, et al.Learning non-locally regularized compressed sensing network with half- quadratic splitting[J]. IEEE transactions on multimedia, 2020, 22(12): 3236-3248.
[32] 辛欣瑶, 汪建文, 赵爽. 基于统计方法的自然风风向预测模型[J]. 工程热物理学报, 2021, 42(6): 1438-1445.
XIN X Y, WANG J W, ZHAO S.Prediction model of natural wind direction based on statistical method[J]. Journal of engineering thermophysics, 2021, 42(6): 1438-1445.
[33] ZHANG W Y, ZHANG L F, WANG J Z, et al.Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting[J]. Applied energy, 2020, 277: 115561.
[34] ZOU F, FU W L, FANG P, et al.A hybrid model based on multi-stage principal component extraction, GRU network and KELM for multi-step short-term wind speed forecasting[J]. IEEE access, 2020, 8: 222931-222943.
[35] FANG S S, YAO X S, ZHANG J Q, et al.Grey correlation analysis on travel modes and their influence factors[J]. Procedia engineering, 2017, 174: 347-352.
[36] YANG H F, ZHU Z J, LI C, et al.A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight[J]. Applied soft computing, 2020, 87: 105972.
[37] 孙娜. 机器学习理论在径流智能预报中的应用研究[D]. 武汉: 华中科技大学, 2019.
SUN N.Research on application of machine learning theory in runoff intelligent forecast[D]. Wuhan: Huazhong University of Science and Technology, 2019.

PDF(2922 KB)

Accesses

Citation

Detail

段落导航
相关文章

/