计及相似日的VMD-FE-LSTM光伏出力组合预测模型研究

王涛, 李薇, 许野, 王旭, 王鑫鹏

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 490-499.

PDF(1866 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1866 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 490-499. DOI: 10.19912/j.0254-0096.tynxb.2023-0093

计及相似日的VMD-FE-LSTM光伏出力组合预测模型研究

  • 王涛, 李薇, 许野, 王旭, 王鑫鹏
作者信息 +

STUDY ON PHOTOVOLTAIC POWER PREDICTION OF VMD-FE-LSTM CONSIDERING SIMILAR DAYS

  • Wang Tao, Li Wei, Xu Ye, Wang Xu, Wang Xinpeng
Author information +
文章历史 +

摘要

针对光伏出力的随机性和波动性导致预测精度偏低的问题,构建一套融合相似日理论、变分模态分解法、模糊熵计算方法和深度学习算法的光伏出力组合预测模型。在运用灰色关联分析法确定影响光伏出力的关键气象因素和使用综合相似距离法选定待预测日的历史相似日的基础上,利用模糊熵对变分模态分解的光伏出力分量进行重组,得到若干规律性较强的新序列;然后,分别构建各重组序列的长短期记忆神经网络预测模型;最终,对重组序列的预测值进行求和得到预测结果。该组合模型在云南某光伏电站的应用结果表明,对比其他模型,所提出的组合预测模型精度更高,具有很好的应用前景。

Abstract

In order to solve the low prediction-accuracy issue caused by strong randomness and volatility of photovoltaic output, in this study, a combined photovoltaic electricity prediction model composed of similar day theory, variational mode decomposition (VMD) method, fuzzy entropy (FE) and deep learning algorithm was established innovatively. The grey relation analysis (GRA) method was firstly used to identify the critical meteorological factors affecting photovoltaic output; Secondly, the historical similar day of predictive day was selected by aid of the comprehensive similar distance method; Then, the photovoltaic output sequence decomposed by VMD method was reorganized based on FE calculation result, leading to several new sequences with strong regularity. Next, the long-short term memory (LSTM) neural network prediction model was formulated for each sequence; Finally, the predicted result was obtained through summing up the predicted value of each sub-sequence. The applied results of this combined model in the photovoltaic plant of Yunnan province demonstrated that, compared with other models, the proposed model had the high prediction accuracy and good prospect.

关键词

光伏发电 / 预测模型 / 变分模态分解 / 长短期记忆神经网络 / 综合相似距离 / 模糊熵

Key words

photovoltaic power / prediction model / variational mode decomposition / long short-term memory neural network / comprehensive similar distance / fuzzy entropy

引用本文

导出引用
王涛, 李薇, 许野, 王旭, 王鑫鹏. 计及相似日的VMD-FE-LSTM光伏出力组合预测模型研究[J]. 太阳能学报. 2024, 45(5): 490-499 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0093
Wang Tao, Li Wei, Xu Ye, Wang Xu, Wang Xinpeng. STUDY ON PHOTOVOLTAIC POWER PREDICTION OF VMD-FE-LSTM CONSIDERING SIMILAR DAYS[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 490-499 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0093
中图分类号: TM615   

参考文献

[1] 国家能源局. 2022年一季度网上新闻发布会文字实录[EB/OL].[2022-01-28]
National Energy Administration.2022 Q1 online press conference transcript[EB/OL].[2022-01-28].
[2] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14.
DING M, WANG W S, WANG X L, et al.A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14.
[3] HU W, ZHANG X Y, ZHU L J, et al.Short-term photovoltaic power prediction based on similar days and improved SOA-DBN model[J]. IEEE access, 2020, 9: 1958-1971.
[4] TASCIKARAOGLU A, UZUNOGLU M.A review of combined approaches for prediction of short-term wind speed and power[J]. Renewable and sustainable energy reviews, 2014, 34(3): 243-254.
[5] 管霖, 赵琦, 周保荣, 等. 基于多尺度聚类分析的光伏功率特性建模及预测应用[J]. 电力系统自动化, 2018, 42(15): 24-30.
GUAN L, ZHAO Q, ZHOU B R, et al.Multi-scale clustering analysis based modeling of photovoltaic power characteristics and its application in prediction[J] Automation of electric power systems, 2018, 42(15): 24-30.
[6] SHARMA N, MANGLA M, YADAV S, et al.A sequential ensemble model for photovoltaic power forecasting[J]. Computers & electrical engineering, 2021, 96: 107484.
[7] 李秉晨, 于惠钧, 刘靖宇. 基于K means和CEEMD-PE-LSTM的短期光伏发电功率预测[J]. 水电能源科学,2021, 39(4): 204-208.
LI B C, YU H J, LIU J Y.Prediction of short-term photovoltaic power generation based on K means and CEEMD-PE-LSTM[J]. Water resources and power, 2021, 39(4): 204-208.
[8] LIN W S, ZHANG B, LI H Y, et al.Multi-step prediction of photovoltaic power based on two-stage decomposition and BILSTM[J]. Neurocomputing, 2022, 504: 56-67.
[9] BAI X Y, LIANG L, ZHU X Q.Improved Markov-chain-based ultra-short-term PV forecasting method for enhancing power system resilience[J]. The journal of engineering, 2021(2): 114-124.
[10] LIU Y Q, SHI J, YANG Y P, et al.Short-term wind-power prediction based on wavelet transform-support vector machine and statistic-characteristics analysis[J]. IEEE transactions on industry applications, 2012, 48(4): 1136-1141.
[11] ROSATO A, PANELLA M, ARANEO R.A distributed algorithm for the cooperative prediction of power production in PV plants[J]. IEEE transactions on energy conversion, 2019, 34(1): 497-508.
[12] QU J Q, QIAN Z, PEI Y.Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern[J]. Energy, 2021, 232: 120996.
[13] LUO X, ZHANG D X, ZHU X.Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge[J]. Energy, 2021, 225:120240.
[14] 闫钇汛, 王丽婕, 郭洪武, 等. 基于多特征分析和提取的短期光伏功率预测[J].高电压技术, 2022, 48(9): 3734-3743.
YAN Y X, WANG L J, GUO H W, et al.Short-term photovoltaic power prediction based on multi-feature analysis and extraction[J]. High voltage engineering, 2022, 48(9): 3734-3743.
[15] 商立群, 李洪波, 侯亚东, 等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2022, 50(21): 138-148.
SHANG L Q, LI H B, HOU Y D, et al.Short-term photovoltaic power generation prediction based on VMD-ISSA-KELM[J]. Power system protection and control, 2022, 50(21): 138-148.
[16] 王育飞, 付玉超, 薛花. 基于Chaos-EEMD-PFBD分解和GA-BP神经网络的光伏发电功率超短期预测法[J]. 太阳能学报, 2020, 41(12): 55-62.
WANG Y F, FU Y C, XUE H.Ultra-short-term forecasting method of photovoltaic power generation based on Chaos-EEMD-PFBD decomposition and GA-BP neural networks[J]. Acta energiae solaris sinica, 2020, 41(12): 55-62.
[17] ZHANG N, REN Q, LIU G C, et al.Short-term PV output power forecasting based on CEEMDAN-AE-GRU[J]. Journal of electrical engineering & technology, 2022, 17(2): 1183-1194.
[18] 茆美琴, 龚文剑, 张榴晨, 等. 基于EEMD-SVM方法的光伏电站短期出力预测[J]. 中国电机工程学报, 2013, 33(34): 17-24, 5.
MAO M Q, GONG W J, ZHANG L C, et al.Short-term photovoltaic generation forecasting based on EEMD-SVM combined method[J]. Proceedings of the CSEE, 2013, 33(34): 17-24, 5.
[19] 刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13): 3358-3365.
LIU C L, WU Y J, ZHEN C G.Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C-means clustering[J]. Proceedings of the CSEE, 2015, 35(13): 3358-3365.
[20] 张琦. 短期光伏发电出力预测方法研究[D]. 广州: 广东工业大学, 2018.
ZHANG Q.Studies on short-term photovoltaic power output prediction method[D]. Guangzhou: Guangdong University of Technology, 2018.
[21] 韦权, 汤占军. 基于SSA-VMD-SE-KELM结合蒙特卡洛法的风电功率区间预测[J]. 智慧电力, 2022, 50(9): 59-66.
WEI Q, TANG Z J.Wind power range prediction based on SSA-VMD-SE-KELM combined with Monte Carlo method[J]. Smart power, 2022, 50(9): 59-66.
[22] 包晗, 曹保江, 刘凯, 等. 基于EEMD模糊熵和GA-SVM的牵引网故障诊断研究[J]. 铁道标准设计, 2023, 67(5): 128-137.
BAO H, CAO B J, LIU K, et al.Research on traction network fault diagnosis based on EEMD fuzzy entropy and GA-SVM[J]. Railway standard design, 2023, 67(5): 128-137.
[23] LI Y B, WANG S, YANG Y, et al.Multiscale symbolic fuzzy entropy: an entropy denoising method for weak feature extraction of rotating machinery[J]. Mechanical systems and signal processing, 2022, 162(7): 108052.
[24] 陈长坤, 孙凤琳. 基于熵权-灰色关联度分析的暴雨洪涝灾情评估方法[J]. 清华大学学报(自然科学版), 2022, 62(6):1067-1073.
CHEN C K, SUN F L.Flood damage assessments based on entropy weight-grey relational analyses[J]. Journal of Tsinghua University(science and technology), 2022, 62(6): 1067-1073.
[25] 廖婧. 新能源电力系统的源网荷多资源调峰策略研究[D]. 长沙: 湖南大学, 2021.
LIAO J.Research on multi-resource peak regulation strategy of source-grid-load in renewable energy power system[D]. Changsha: Hunan University, 2021.
[26] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[27] ZHENG J D, PAN H Y, TONG J Y, et al.Generalized refined composite multiscale fuzzy entropy and multi cluster feature selection based intelligent fault diagnosis of rolling bearing[J]. ISA transactions, 2022, 123: 136-151.
[28] 朱玥, 顾洁, 孟璐. 基于EMD-LSTM的光伏发电预测模型[J]. 电力工程技术, 2020, 39(2): 51-58.
ZHU Y, GU J, MENG L.Photovoltaic power generation prediction model based on EMD-LSTM[J]. Electric power engineering technology, 2020, 39(2): 51-58.

基金

国家自然科学基金面上项目(62073134)

PDF(1866 KB)

Accesses

Citation

Detail

段落导航
相关文章

/