锗溴混合掺杂调控钙钛矿太阳电池光电特性的第一性原理研究

郭茶秀, 韦智豪, 周俊杰, 余银生, 田禾青

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 475-480.

PDF(2211 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2211 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 475-480. DOI: 10.19912/j.0254-0096.tynxb.2023-0112

锗溴混合掺杂调控钙钛矿太阳电池光电特性的第一性原理研究

  • 郭茶秀, 韦智豪, 周俊杰, 余银生, 田禾青
作者信息 +

FIRST-PRINCIPLES STUDY ON REGULATION OF OPTICAL PROPERTIES OF PEROVSKITE SOLAR CELLS BY GERMANIUM BROMIDE MIXED DOPING

  • Guo Chaxiu, Wei Zhihao, Zhou Junjie, Yu Yinsheng, Tian Heqing
Author information +
文章历史 +

摘要

采用第一性原理方法对锗溴混合掺杂下甲胺基钙钛矿(MAPbI3)材料的能带结构、态密度、介电函数和吸收光谱进行研究。构建MAPbI3、MAPb0.75Ge0.25I3、MAPbI2.5Br0.5、MAPb0.75Ge0.25I2.5Br0.5这4种钙钛矿结构模型并优化其结构,得出光电特性。研究结果表明,锗溴混合掺杂可改变价带顶与导带底位置及斜率,调控带隙值大小,同时混合掺杂也会改变价带顶与导带底的斜率,4种钙钛矿模型中锗溴混合掺杂时价带顶与导带底的斜率最小,有利于电子跃迁,提升光电转换效率;掺杂锗可提高钙钛矿在可见光区的吸收性能,掺杂溴对钙钛矿光学特性影响不大。

Abstract

The band structure, state density, dielectric function, and absorption spectrum of germanium-bromine mixed-doped methylamino-based perovskite (MAPbI3) materials were investigated using first-principles methods. Four perovskite structure models were constructed: MAPbI3, MAPb0.75Ge0.25I3, MAPbI2.5Br0.5, and MAPb0.75Ge0.25I2.5Br0.5. The structures of the four perovskites were optimized, and their photoelectric characteristics were obtained. The results indicate that germanium and bromine doping can alter the position and slope of the valence band top and conduction band bottom, adjusting the band gap value. The smallest slope of the valence band top and conduction band bottom is observed when germanium and bromine are jointly doped, among the four structures. This is conducive to electron transition and enhances photoelectric conversion efficiency. Germanium improves the absorption performance of perovskites in the visible light region, while bromine has a minimal effect on the optical properties of perovskites.

关键词

钙钛矿 / 太阳电池 / 光电特性 / 混合掺杂 / 第一性原理

Key words

perovskite / solar cells / optical properties / mixed doping / first principles

引用本文

导出引用
郭茶秀, 韦智豪, 周俊杰, 余银生, 田禾青. 锗溴混合掺杂调控钙钛矿太阳电池光电特性的第一性原理研究[J]. 太阳能学报. 2024, 45(5): 475-480 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0112
Guo Chaxiu, Wei Zhihao, Zhou Junjie, Yu Yinsheng, Tian Heqing. FIRST-PRINCIPLES STUDY ON REGULATION OF OPTICAL PROPERTIES OF PEROVSKITE SOLAR CELLS BY GERMANIUM BROMIDE MIXED DOPING[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 475-480 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0112
中图分类号: O641   

参考文献

[1] KIM J Y, LEE J W, JUNG H S, et al.High-efficiency perovskite solar cells[J]. Chemical reviews, 2020, 120(15): 7867-7918.
[2] KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[3] KIM J, HO-BAILLIE A, HUANG S J.Review of novel passivation techniques for efficient and stable perovskite solar cells[J]. Solar RRL, 2019, 3(4): 1800302.
[4] 张傲, 王小平, 王丽军, 等. 掺杂在钙钛矿太阳能电池中的应用[J]. 材料科学与工程学报, 2019, 37(4): 680-688.
ZHANG A, WANG X P, WANG L J, et al.Application of doping in perovskite solar cells[J]. Journal of materials science and engineering, 2019, 37(4): 680-688.
[5] 董巧, 夏昕, 张兵, 等. ABX3型太阳电池材料结构掺杂与优化的DFT研究[J]. 太阳能学报, 2016, 37(12): 3086-3090.
DONG Q, XIA X, ZHANG B, et al.DFT modeling of ABX3 type perovskite doping structures[J]. Acta energiae solaris sinica, 2016, 37(12): 3086-3090.
[6] 李毅, 朱俊, 张旭辉, 等. CH3NH3PbI3形貌对钙钛矿电池性能的影响研究[J]. 太阳能学报, 2019, 40(9): 2630-2635.
LI Y, ZHU J, ZHANG X H, et al.Investigation on morphology-photovoltaic property correlation in perovskite solar cells[J]. Acta energiae solaris sinica, 2019, 40(9): 2630-2635.
[7] 王晓春, 孙钦军, 高利岩, 等. 电纺AZO NWs电子传输层提高钙钛矿太阳电池性能的研究[J]. 太阳能学报, 2022, 43(1): 369-374.
WANG X C, SUN Q J, GAO L Y, et al.Study on performance enhancement of perovskite solar cells via electrospun AZO NWs as electronic transport layer[J]. Acta energiae solaris sinica, 2022, 43(1): 369-374.
[8] 杜林, 彭长涛, 唐宇, 等. 2-巯基嘧啶界面钝化改善钙钛矿太阳电池性能[J]. 太阳能学报, 2022, 43(9): 73-77.
DU L, PENG C T, TANG Y, et al.Interfacial passivation for enhanced performance of perovskite solar cells via by 2-mercaptopyrimidine[J]. Acta energiae solaris sinica, 2022, 43(9): 73-77.
[9] EVEN J, PEDESSEAU L, JANCU J M, et al.Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications[J]. The journal of physical chemistry letters, 2013, 4(17): 2999-3005.
[10] MOSCONI E, AMAT A, NAZEERUDDIN M K, et al.First-principles modeling of mixed halide organometal perovskites for photovoltaic applications[J]. The journal of physical chemistry C, 2013, 117(27): 13902-13913.
[11] BAIKIE T, FANG Y N, KADRO J M, et al.Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J]. Journal of materials chemistry A, 2013, 1(18): 5628-5641.
[12] SUN J, WANG H T, HE J L, et al.Ab initioinvestigations of optical properties of the high-pressure phases of ZnO[J]. Physical review B, 2005, 71(12): 125132.
[13] SHI H L, CHU M F, ZHANG P.Optical properties of UO2 and PuO2[J]. Journal of nuclear materials, 2010, 400(2): 151-156.

基金

国家自然科学基金(51906228)

PDF(2211 KB)

Accesses

Citation

Detail

段落导航
相关文章

/