干法生物天然气BECCS工程碳负排效益分析

李洪深, 楚洁璞, 徐伟涛, 魏利, 李大育, 李十中

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 158-164.

PDF(1570 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1570 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 158-164. DOI: 10.19912/j.0254-0096.tynxb.2023-0117

干法生物天然气BECCS工程碳负排效益分析

  • 李洪深1,2, 楚洁璞2, 徐伟涛2, 魏利1, 李大育2, 李十中1
作者信息 +

CARBON NEGATIVE BENEFIT EVALUATION ON DRY FERMENTATION BIOMETHANE BECCS PROJECT

  • Li Hongshen1,2, Chu Jiepu2, Xu Weitao2, Wei Li1, Li Dayu2, Li Shizhong1
Author information +
文章历史 +

摘要

参考清洁发展机制(CDM)方法学,结合中国国情,分析干法生物天然气BECCS工程的项目边界、基准线排放量和项目活动排放量,并计算实际工程的温室气体减排量。结果表明,生物天然气BECCS工程碳减排潜力表现在以有序工程替代无序排放、生产天然气代替化石能源、生产有机肥替代化肥和从沼气中分离CO2并存储利用4个方面,各方面减排量在净减排量中占比分别为1.1%、41.0%、39.6%和18.3%。按构建的计算方法估算每吨干秸秆和每吨畜禽粪污的碳负排效益分别为1229 kg CO2e和275 kg CO2e。预计至2060年,生物天然气BECCS工程每年可贡献8.6亿t碳汇,可为中国碳中和目标实现贡献重要力量。

Abstract

Based on the CDM methodology,this study analyzes the project boundary,baseline emissions and project activity emissions of the BECCS biomethane project and calculates the existing engineering carbon emission reduction. The results show that GHG emission reduction potential of BECCS biomethane projects is demonstrated in four aspects, replacing emissions from random to order with engineering,producing natural gas to substitute fossil fuel,yielding organic fertilizer instead of chemical fertilizer and separating CO2 from biogas and storing it for utilization. The carbon negative benefits of the above four aspects account for 1.1%,41.0%,39.6% and 18.3% of the net emission reduction,respectively. The carbon negative emission benefits of dry straw and livestock manure were estimated to be 1229 kg CO2e/t and 275 kg CO2e/t, respectively. It is expected that the BECCS biomethane project will contribute up to 0.86 billion ton GHG emission reduction per year till 2060 and become midstream in achieving the carbon-neutral target in China.

关键词

沼气 / 农业废弃物 / 碳足迹 / 碳捕集 / 生物天然气

Key words

biogas / agriculture waste / carbon footprint / carbon capture / biomethane

引用本文

导出引用
李洪深, 楚洁璞, 徐伟涛, 魏利, 李大育, 李十中. 干法生物天然气BECCS工程碳负排效益分析[J]. 太阳能学报. 2024, 45(5): 158-164 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0117
Li Hongshen, Chu Jiepu, Xu Weitao, Wei Li, Li Dayu, Li Shizhong. CARBON NEGATIVE BENEFIT EVALUATION ON DRY FERMENTATION BIOMETHANE BECCS PROJECT[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 158-164 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0117
中图分类号: X712   

参考文献

[1] UNFCCC. Adoption of the Paris agreement[EB/OL].https://unfccc.int/process-and-meetings/the-paris-agreement.
[2] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.
HU A G.China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (social sciences edition), 2021, 21(3): 1-15.
[3] IPCC. Working group III mitigation of climate change[EB/OL].https://www.ipcc.ch/working-group/wg3/#FullReport.
[4] 李十中. 推动新能源革命促进实现碳中和目标[J]. 人民论坛·学术前沿, 2021(14): 42-51.
LI S Z.Promoting the new energy revolution and achieving the goal of carbon neutrality[J]. Frontiers, 2021(14): 42-51.
[5] 李十中. 生物经济发展趋向:构建生物食源产业与生物能源产业体系[J]. 人民论坛·学术前沿, 2022(14): 14-26.
LI S Z.Trends in bioeconomic development: building a biofood industry and bioenergy industry system[J]. Frontiers, 2022(14): 14-26.
[6] 石元春. 农林碳中和工程[J]. 科技导报, 2022, 40(7): 36-43.
SHI Y C.Agro-forestry engineering for carbon neutrality[J]. Science & technology review, 2022, 40(7): 36-43.
[7] 陈冠益, 夏晒歌, 李婉晴, 等. 面向碳中和的生物柴油制备及应用研究进展[J]. 太阳能学报, 2022, 43(9): 343-353.
CHEN G Y, XIA S G, LI W Q, et al.Research progress in preparation and application of biodiesel for carbon neutrality[J]. Acta energiae solaris sinica, 2022, 43(9): 343-353.
[8] 赵胜雪, 赵越, 康可新, 等. 秸秆气固燃料二元联产的可行性与经济性研究[J]. 太阳能学报, 2020, 41(1): 186-191.
ZHAO S X, ZHAO Y, KANG K X, et al.Dualistic co-production of straw gas-solid fuel: focus on feasibility and economy[J]. Acta energiae solaris sinica, 2020, 41(1): 186-191.
[9] IEA. Renewables 2018, market analysis and forecast from 2018 to 2013 on renewable energy and technologies[EB/OL]. https://www.iea.org/reports/renewables-2018.
[10] CDM. Natural gas substitution by biogenic methane produced from the anaerobic digestion of organic waste[EB/OL].https://cdm.unfccc.int/methodologies/PAmethodologies/approved.
[11] 王凯军, 董仁杰, 罗娟, 等. 中国沼气行业的双碳贡献[M]. 北京: 清华大学出版社, 2023: 48-87.
WANG K J, DONG R J, LUO J, et al.China biogas industry carbon reduction contribution[M]. Beijing: Tsinghua University Press, 2023: 48-87.
[12] 发展与改革委员会. 利用粪便管理系统产生的沼气制取并利用生物天然气温室气体减排方法学[EB/OL].https://cdm.ccchina.org.cn/archiver/cdmcn/UpFile/Files/Default/20160826134533203939.pdf.
National Development and Reform Commission. GHG emission reduction methodology for biogas production from manure management system and the use of biomethane[EB/OL].https://cdm.ccchina.org.cn/archiver/cdmcn/UpFile/Files/Default/20160826134533203939.pdf.
[13] 中华人民共和国生态环境部. 全国碳排放权交易市场第一个履约周期报告[R]. P020221230799532329594, 2022.
Ministry of Ecology and Environment of the People’s Republic of China. Report on the first implementation cycle of the national carbon emission trading market[R]. P020221230799532329594, 2022.
[14] 中华人民共和国生态环境部. 中华人民共和国气候变化第二次两年更新报告[R]. P020190701765971866571, 2019.
Ministry of Ecology and Environment of the People’s Republic of China. The People’s Republic of China second biennial update report on climate change[R]. P020190701765971866571, 2019.
[15] IPCC. IPCC guidelines for national greenhouse gas inventories[M]. Kanagawa: Institute for Global Environmental Strategies, 2006: 1753-1906.
[16] XU B, LIN B Q.Factors affecting CO2 emissions in China’s agriculture sector: evidence from geographically weighted regression model[J]. Energy policy, 2017, 104: 404-414.
[17] LI C S, ZHUANG Y H, CAO M, et al.Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China[J]. Nutrient cycling in agroecosystems, 2001, 60(1): 159-175.
[18] 吴小芳, 王贤华, 杨海平, 等. 农村生物质沼气系统的生命周期分析[J]. 太阳能学报, 2014, 35(8): 1550-1555.
WU X F, WANG X H, YANG H P, et al.Life cycle assessment of rural biogas system[J]. Acta energiae solaris sinica, 2014, 35(8): 1550-1555.
[19] 鲁政委, 粟晓春, 钱立华, 等. “碳中和” 愿景下我国CCER市场发展研究[J]. 西南金融, 2022(12): 3-16.
LU Z W, SU X C, QIAN L H, et al.Research on CCER market development in China under the vision of “carbon neutrality”[J]. Southwest finance, 2022(12): 3-16.
[20] 谢丽华, 李玲玲, 谢军红, 等. 有机肥替代化肥对陇中旱区玉米生长及农田碳排放的影响[J]. 植物营养与肥料学报, 2022, 28(6): 1029-1038.
XIE L H, LI L L, XIE J H, et al.Effects of substitution of chemical fertilizer by organic fertilizer on maize growth and field carbon emission in dry farming area of Longzhong, Gansu province[J]. Journal of plant nutrition and fertilizers, 2022, 28(6): 1029-1038.
[21] GB/T 41328—2022, 生物天然气[S].
GB/T 41328—2022, Biogas-based natural gas[S].
[22] 张媛. 化肥企业碳排放成本混合核算及控制研究[D]. 湘潭: 湖南科技大学, 2018.
ZHANG Y.The study of mixed accounting and control on carbon emission in chemical fertilizer enterprises[D].Xiangtan: Hunan University of Science and Technology, 2018.
[23] USEP. Method 21-determination of volatile organic compound leaks[EB/OL].http://www.air.dnr.state.ga.us.
[24] 苏健, 梁英波, 丁麟, 等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 2021, 36(9): 1001-1009.
SU J, LIANG Y B, DING L, et al.Research on China’s energy development strategy under carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1001-1009.
[25] 张希良, 黄晓丹, 张达, 等. 碳中和目标下的能源经济转型路径与政策研究[J]. 管理世界, 2022, 38(1): 35-66.
ZHANG X L, HUANG X D, ZHANG D, et al.Research on the pathway and policies for China’s energy and economy transformation toward carbon neutrality[J]. Journal of management world, 2022, 38(1): 35-66.
[26] NY/T1220—2006,沼气工程技术规范[S].
NY/T1220—2006,Technical specification for biogas engineering[S].

基金

政府间国际科技创新合作重点专项(2016YFE0108500)

PDF(1570 KB)

Accesses

Citation

Detail

段落导航
相关文章

/