农业光伏局地气候效应研究

罗小林, 罗久富, 罗忠新, 吴赛男, 隋欣

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 450-457.

PDF(1875 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1875 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 450-457. DOI: 10.19912/j.0254-0096.tynxb.2023-0133

农业光伏局地气候效应研究

  • 罗小林1,2, 罗久富1,2, 罗忠新1,2, 吴赛男1,2, 隋欣1,2
作者信息 +

AGROPHOTOVOLTAICS EFECTS ON LOCAL MICROAGROCLIMATE

  • Luo Xiaolin1,2, Luo Jiufu1,2, Luo Zhongxin1,2, Wu Sainan1,2, Sui Xin1,2
Author information +
文章历史 +

摘要

光伏场区农林土地综合利用亟需探索局地气候(含农田小气候)特征与变化规律。利用光伏电站自动气象观测系统,基于1个自然年阵列下方种植区、阵列上方、场外对照区逐30分钟连续高精度气象观测数据,开展地-气-农林-光伏复合项目局地气候效应研究。结果表明:光伏阵列显著削弱阵列上方净辐射,阵列下方种植区白昼净辐射为负值,并以有效辐射形式损失热量;阵列下方种植区反照率为0.32~0.45,比场外对照区显著提高;光伏阵列具有增温、增湿作用,日均升温0.23 ℃,白昼升温最高达0.83 ℃,日均增湿2%;但是,阵列下方种植区秋季气温日较差降低可高达5.06 ℃,不利于作物有机质和糖分积累,因此农林复合型光伏土地综合利用需关注阵列下方农田小气候气温日较差的改善。采用静风频率定量识别光伏阵列对风场的影响,结果表明阵列下方和阵列上方静风频率分别比场外对照区提高50%和7%。上述研究成果可为农林复合型光伏项目土地综合利用提供科技支撑。

Abstract

The effects of agrophotovoltaics (APV) system on the local microclimate (e.g. field microclimate) are poorly understood although rapid increasing APV in the world. A meteorological observation system had be integrated for monitoring radiation and meteorological factors at three sites inside and outside of the PV plant (i.e. 1.5 m above the PV arrays inside, under the PV arrays inside, 100 m distance away outside PV station boundary as a reference site). From October 2021 to September 2022, synchronization microclimate data at the three sites were continuously measured and collected at the interval of 30 minutes. Our results showed that during the day, PV arrays caused net radiation changed into opposite direction under the PV arrays and net radiation above the PV arrays weakened by 7% compared to the reference site. Specially, the albedo under the PV arrays was 0.32-0.45, bigger than that at the reference site. The PV arrays could promote air temperature and humidity. The daily air temperature under the PV arrays is averagely risen by 0.23 ℃ compared with the reference site. Further, air temperature change under the PV arrays could maximally rise up to 0.83 ℃ during the day. We also found the daily relative humidity under the PV arrays was up to 2.0% wetter than that at the reference site. However, the daily temperature range (DTR) under the PV arrays in autumn decreased by up to 5.06 ℃, possibly leading to less accumulation of organic matter and sugar in crops. These data provided evidence to support positive agricultural measures to avoid the narrowed DTR’s negative effect on the crops. The static wind frequency (SWF) was used as an indicator to identify PV arrays impact on the flow field. SWF under and above the PV arrays were 50% and 7%, both higher than SWF at the reference site, respectively. The results can provide technological support for the APV’s development and management.

关键词

空间分布 / 光伏阵列 / 太阳辐射 / 农田小气候 / 农业光伏

Key words

spatial distribution / PV arrays / solar radiation / local climate / agrophotovoltaics

引用本文

导出引用
罗小林, 罗久富, 罗忠新, 吴赛男, 隋欣. 农业光伏局地气候效应研究[J]. 太阳能学报. 2024, 45(5): 450-457 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0133
Luo Xiaolin, Luo Jiufu, Luo Zhongxin, Wu Sainan, Sui Xin. AGROPHOTOVOLTAICS EFECTS ON LOCAL MICROAGROCLIMATE[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 450-457 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0133
中图分类号: TM615   

参考文献

[1] 隋欣, 魏毅, 罗小林, 等. 面向“双碳” 目标的脆弱区域生态光伏模式研究[J]. 太阳能学报, 2022, 43(7): 56-63.
SUI X, WEI Y, LUO X L, et al.Emergence of a new pattern of ecological solar photovoltaics(ECO-PV)in ecologically fragile areas driven by carbon peak and neutrality targets in China[J]. Acta energiae solaris sinica, 2022, 43(7): 56-63.
[2] 翟波, 高永, 党晓宏, 等. 内蒙古中部草原区光伏电站对土壤水分及其脉冲响应的作用机制[J]. 太阳能学报, 2022, 43(6): 49-56.
ZHAI B, GAO Y, DANG X H, et al.Mechanism of photovoltaic power station on soil moisture and its impulse response in grassland region of central inner Mongolia[J]. Acta energiae solaris sinica, 2022, 43(6): 49-56.
[3] 成珂, 马晓瑶, 孙琦琦. 光伏温室大棚组件布置CFD模拟研究[J]. 太阳能学报, 2021, 42(8): 159-165.
CHENG K, MA X Y, SUN Q Q.CFD simulation study on module layout of photovoltaic greenhouse[J]. Acta energiae solaris sinica, 2021, 42(8): 159-165.
[4] SCHINDELE S, TROMMSDORFF M, SCHLAAK A, et al.Implementation of agrophotovoltaics: techno-economic analysis of the price-performance ratio and its policy implications[J]. Applied energy, 2020, 265: 114737.
[5] 崔杨, 陈正洪. 光伏电站对局地气候的影响研究进展[J]. 气候变化研究进展, 2018, 14(6): 593-601.
CUI Y, CHEN Z H.Research progresses of the impacts of photovoltaic power plants on local climate[J]. Climate change research, 2018, 14(6): 593-601.
[6] 赵延岩, 李振朝, 高晓清, 等. 戈壁大型光伏电站夏季晴天地表通量特征[J]. 太阳能学报, 2021, 42(5): 138-144.
ZHAO Y Y, LI Z C, GAO X Q, et al.Surface flux characteristics of large-scale photovoltaic power station in Gobi on sunny days in summer[J]. Acta energiae solaris sinica, 2021, 42(5): 138-144.
[7] 李小院, 张圣微, 王帅, 等. 放牧对退化草地近地面辐射的影响[J]. 中国沙漠, 2022, 42(1): 223-233.
LI X Y, ZHANG S W, WANG S, et al.Effects of grazing on near surface radiation in degraded steppe in Inner Mongolia, China[J]. Journal of desert research, 2022, 42(1): 223-233.
[8] 李国庆, Armstrong Alona, 刘哲. 光伏电场对地表温度的影响研究[J]. 太阳能学报, 2020, 41(12): 117-123.
LI G Q, ALONA A, LIU Z.Effect of solar photovoltaic power field on land surface temperature[J]. Acta energiae solaris sinica, 2020, 41(12): 117-123.
[9] WANG K, WAN Z, WANG P, et al.Evaluation and improvement of the MODIS land surface temperature/emissivity products using ground-based measurements at a semi-desert site on the western Tibetan Plateau[J]. International journal of remote sensing, 2007, 28(11): 2549-2565.
[10] NEMET G F.Net radiative forcing from widespread deployment of photovoltaics[J]. Environmental science & technology, 2009, 43(6): 2173-2178.
[11] TAHA H.The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas[J]. Solar energy, 2013, 91: 358-367.
[12] YANG L W, GAO X Q, LYU F, et al.Study on the local climatic effects of large photovoltaic solar farms in desert areas[J]. Solar energy, 2017, 144: 244-253.
[13] HASSANPOUR ADEH E, SELKER J S, HIGGINS C W.Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency[J]. PLoS One, 2018, 13(11): e0203256.
[14] 高晓清, 杨丽薇, 吕芳, 等. 光伏电站对格尔木荒漠地区空气温湿度影响的观测研究[J]. 太阳能学报, 2016, 37(11): 2909-2915.
GAO X Q, YANG L W, LYU F, et al.Observational study on the impact of the large solar farm on air temperature and humidity in desert areas of Golmud[J]. Acta energiae solaris sinica, 2016, 37(11): 2909-2915.
[15] JIANG J X, GAO X Q, LYU Q Q, et al.Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas[J]. Renewable energy, 2021, 174: 157-169.
[16] ARMSTRONG A, OSTLE N J, WHITAKER J.Solar park microclimate and vegetation management effects on grassland carbon cycling[J]. Environmental research letters, 2016, 11(7): 074016.
[17] 秦一凡. 大型荒漠光伏开发对局地微气候-土壤-植被的影响研究[D]. 西安: 西安理工大学, 2021.
QIN Y F.Research on the impact of large-scale desert photovoltaic development on local microclimate, soil and vegetation[D]. Xi’an: Xi’an University of Technology, 2021.
[18] 殷代英, 马鹿, 屈建军, 等. 大型光伏电站对共和盆地荒漠区微气候的影响[J]. 水土保持通报, 2017, 37(3): 15-21.
YIN D Y, MA L, QU J J, et al.Effect of large photovoltaic power station on microclimate of desert region in Gonghe Basin[J]. Bulletin of soil and water conservation, 2017, 37(3): 15-21.
[19] 乐天宇. 小气候的改善与管理[M]. 北京: 农业出版社, 1982.
LE T Y.Improvement and management of microclimate[M]. Beijing: China Agriculture Press, 1982.
[20] QX/T 381.1—2017, 农业气象术语第1部分:农业气象基础[S].
QX/T 381.1—2017, Terminology of agrometeorology-part 1: foundation of agrometeorology[S].
[21] 周雪莹, 李显风, 胡丽丽. 江西省农田小气候观测数据服务平台的设计与实现[J]. 湖北农业科学, 2022, 61(21): 163-167, 175.
ZHOU X Y, LI X F, HU L L.Design and realization of service platform for farmland microclimate observation data in Jiangxi Province[J]. Hubei agricultural sciences, 2022, 61(21): 163-167, 175.
[22] 中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003.
Central Meteorological Bureau.Specification for ground meteorological observation[M]. Beijing: China Meteorological Press, 2003.
[23] 卢俐, 张晓玲, 玉坤, 等. 北京地区自动气象站观测资料的实时质量控制及应用[J]. 安徽农业科学, 2014, 42(16): 5153-5155.
LU L, ZHANG X L, YU K, et al.Real-time quality control and application of observation data from automatic weather stations in Beijing area[J]. Journal of Anhui agricultural sciences, 2014, 42(16): 5153-5155.
[24] QX/T 117—2020, 气象观测资料质量控制地面气象辐射[S].
QX/T 117—2020, Quality control of meteorological observation data-surface radiation[S].
[25] 陶澍. 应用数理统计方法[M]. 北京: 中国环境科学出版社, 1994: 95-98.
TAO S.Applying mathematical statistics method[M]. Beijing: China Environmental Science Press, 1994: 95-98.
[26] LOEB N G, WANG H L, ALLAN R P, et al.New generation of climate models track recent unprecedented changes in earth’s radiation budget observed by CERES[J]. Geophysical research letters, 2020, 47(5):1134-1150.
[27] 朱躲萍, 叶辉, 王军邦, 等. 青海三江源区高寒植被地表反照率变化及其辐射温度效应[J]. 生态学报, 2022, 42(14): 5630-5641.
ZHU D P, YE H, WANG J B, et al.Albedo changes of alpine vegetation and its radiative temperature effect in the Three-River Headwaters Region of Qinghai[J]. Acta ecologica sinica, 2022, 42(14): 5630-5641.
[28] 翁笃鸣. 青藏高原地表净辐射若干重要特征研究[J]. 南京气象学院学报, 1991, 14(2): 151-159.
WENG D M.Some major features of surface net radiation in the Qinghai-Xizang Plateau[J]. Journal of Nanjing Institute of Meteorology, 1991, 14(2): 151-159.
[29] 李国栋, 史桂芬, 吴东星, 等. 黄淮海平原典型冬小麦农田生态系统能量平衡研究—以封丘地区为例[J]. 气象与环境学报, 2017, 33(1): 93-100.
LI G D, SHI G F, WU D X, et al.Research on energy balance of the typical winter wheat farmland ecosystem in the Huanghuaihai Plain: a case study in Fengqiu region[J]. Journal of meteorology and environment, 2017, 33(1): 93-100.
[30] 蒋俊霞, 高晓清. 光伏系统气候效应及影响机理研究进展[J]. 高原气象, 2022, 41(4): 953-962.
JIANG J X, GAO X Q.Research progress on climate effect and influence mechanism of photovoltaic systems[J]. Plateau meteorology, 2022, 41(4): 953-962.
[31] 申彦波. 我国太阳能资源评估方法研究进展[J]. 气象科技进展, 2017, 7(1): 77-84.
SHEN Y B.Development of the solar energy resource assessment methods in China[J]. Advances in meteorological science and technology, 2017, 7(1): 77-84.
[32] 谢琰, 文军, 刘蓉, 等. 黄河源区高寒湿地近地面辐射收支特征初步分析[J]. 太阳能学报, 2019, 40(1): 1-10.
XIE Y, WEN J, LIU R, et al.An initial analysis of characteristics of radiation budget near ground in alpine wetland in source area of the Yellow River[J]. Acta energiae solaris sinica, 2019, 40(1): 1-10.
[33] 匡昭敏, 欧钊荣, 李莉, 等. 气温日较差对甘蔗蔗糖分的影响评估[J]. 甘蔗糖业, 2022, 51(3): 24-29.
KUANG Z M, OU Z R, LI L, et al.Evaluation of the influence of daily air temperature range on sucrose content of sugarcane[J]. Sugarcane and canesugar, 2022, 51(3): 24-29.
[34] 郁家成, 黄小燕, 梁邦云, 等. 江淮地区气温日较差变化特征及其对作物生育影响的研究[C]//2007农业环境科学峰会论文摘要集. 北京, 中国, 2007.
YU J C, HUANG X Y, LIANG B Y, et al.A study on the characteristics of daily temperature range changes in the Jianghuai region and its impact on crop growth[C]//Paper Abstract Summary of Agricultural Environmental Science Summit Conference. Beijing, China, 2007.
[35] 常旭虹, 赵广才, 张雯, 等. 作物残茬对农田土壤风蚀的影响[J]. 水土保持学报, 2005, 19(1): 28-31.
CHANG X H, ZHAO G C, ZHANG W, et al.Effect of crop stubble mulch on farmland wind erosion[J]. Journal of soil water conservation, 2005, 19(1): 28-31.
[36] 张等宏, 肖春芳, 高剑华, 等. 风媒介导下马铃薯田杂草种子的传播途径[C]//2021年第二十三届中国马铃薯大会. 榆林, 中国, 2021.
ZHANG D H, XIAO C F, GAO J H, et al. Transmission of weed seeds in potato fields under wind vector[C]//Proceedings of the Twenty-third(2021) China Potato Conference. Yulin, China, 2021.
[37] 唐敬, 蔡旭晖, 康凌, 等. 复杂地形低风速气象特征分析[J]. 气象科学, 2011, 31(4): 542-547.
TANG J, CAI X H, KANG L, et al.Characteristics of low-wind speed meteorology over complex terrain in north-central Hunan Province[J]. Journal of the meteorological sciences, 2011, 31(4): 542-547.
[38] 靳建军, 张镭, 陈长和, 等. 兰州东部地区冬季地面风场特征[J]. 兰州大学学报, 2000, 36(1): 113-120.
JIN J J, ZHANG L, CHEN C H, et al.Characteristics of surface wind over the eastern part of Lanzhou Basin in winter[J]. Journal of Lanzhou University, 2000, 36(1): 113-120.

基金

技术服务项目(SS120203A0242022)

PDF(1875 KB)

Accesses

Citation

Detail

段落导航
相关文章

/