光伏幕墙辅助双源热泵系统在不同地区的多目标优化配置

常莎莎, 冯国会, 黄凯良, 张磊, 刘馨, 王茜如

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 297-305.

PDF(2304 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2304 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 297-305. DOI: 10.19912/j.0254-0096.tynxb.2023-0137

光伏幕墙辅助双源热泵系统在不同地区的多目标优化配置

  • 常莎莎, 冯国会, 黄凯良, 张磊, 刘馨, 王茜如
作者信息 +

MULTI-OBJECTIVE OPTIMIZATION OF PHOTOVOLTAIC CURTAIN WALL ASSISTED DUAL-SOURCE HEAT PUMP SYSTEM IN DIFFERENT REGIONS

  • Chang Shasha, Feng Guohui, Huang Kailiang, Zhang Lei, Liu Xin, Wang Xiru
Author information +
文章历史 +

摘要

为克服单一可再生能源应用的局限性,提出一种光伏幕墙辅助双源热泵系统。利用TRNSYS建立仿真模型,以系统能耗和生命周期成本为目标函数,采用非支配排序遗传算法(NSGA-Ⅱ),对不同地区系统配置规模进行多目标优化设计,并利用加权和法确定均衡解。结果表明:哈尔滨、长春、沈阳3个地区优化后的系统运行能耗比优化前分别增加5.9%、5.0%和3.9%,生命周期成本降低13.6%、17.1%和12.9%;与单目标优化相比,多目标优化在兼顾性能的前提下能明显降低生命周期成本,具有明显的优势。

Abstract

To overcome the limitation of single renewable energy applications in cold regions, a photovoltaic curtain wall assisted dual-source heat pump system is proposed. A system simulation model was established by TRNSYS. Taking the energy consumption and life cycle cost of the system as objective functions, the multi-objective optimization design of the configuration scale of the proposed system in different regions was carried out by using non-dominated sorting genetic algorithm (NSGA-Ⅱ), and the equilibrium solution was determined by using weighted sum method. The results show that the energy consumption of the optimized system in Harbin, Changchun and Shenyang increases by 5.9%, 5.0% and 3.9%, respectively, and the life cycle cost decreases by 13.6%, 17.1% and 12.9%. Compared with single objective optimization, multi-objective optimization can significantly reduce the life cycle cost while taking into account the performance, and has obvious advantages.

关键词

热泵系统 / 光伏组件 / 多目标优化 / 光伏幕墙 / 生命周期 / 决策

Key words

heat pump systems / photovoltaic modules / multiobjective optimization / PV curtain wall / life cycle / decision making

引用本文

导出引用
常莎莎, 冯国会, 黄凯良, 张磊, 刘馨, 王茜如. 光伏幕墙辅助双源热泵系统在不同地区的多目标优化配置[J]. 太阳能学报. 2024, 45(5): 297-305 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0137
Chang Shasha, Feng Guohui, Huang Kailiang, Zhang Lei, Liu Xin, Wang Xiru. MULTI-OBJECTIVE OPTIMIZATION OF PHOTOVOLTAIC CURTAIN WALL ASSISTED DUAL-SOURCE HEAT PUMP SYSTEM IN DIFFERENT REGIONS[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 297-305 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0137
中图分类号: TK513.5   

参考文献

[1] 王其良, 周恩泽, 屠丽娟, 等. 基于太阳能补热的多源互补供暖系统优化研究[J]. 太阳能学报, 2021, 42(11): 178-185.
WANG Q L, ZHOU E Z, TU L J, et al.Optimization research on multi-source complementary heating system based on solar heating[J]. Acta energiae solaris sinica, 2021, 42(11): 178-185.
[2] SOMMERFELDT N, MADANI H.In-depth techno-economic analysis of PV/thermal plus ground source heat pump systems for multi-family houses in a heating dominated climate[J]. Solar energy, 2019, 190: 44-62.
[3] DU B Y, QUAN Z H, HOU L S, et al.Experimental study on the performance of a photovoltaic/thermal-air dual heat source direct-expansion heat pump[J]. Applied thermal engineering, 2021, 188: 116598.
[4] LU S X, ZHANG J L, LIANG R B.Experimental research on the vapor injected photovoltaic-thermal heat pump for heating, power generation and refrigeration[J]. Energy conversion and management, 2022, 257: 115452.
[5] 张慈枝, 侯根富, 戴贵龙, 等. 太阳能/空气源热泵复合热水系统的串、并联式性能研究[J]. 太阳能, 2017(6): 49-54.
ZHANG C Z, HOU G F, DAI G L, et al.Study on series and parallel performance of solar energy/air source heat pump composite hot water system[J]. Solar energy, 2017(6): 49-54.
[6] 王林, 付文轩, 谈莹莹, 等. 太阳能辅助的双源耦合热泵系统制热特性研究[J]. 太阳能学报, 2019, 40(8): 2272-2278.
WANG L, FU W X, TAN Y Y, et al.Study on heating performance of solar assisted dual-source hybrid heat pump systems[J]. Acta energiae solaris sinica, 2019, 40(8): 2272-2278.
[7] LI Z Q, HUANG X H.Simulation analysis on operation performance of a hybrid heat pump system integrating photovoltaic/thermal and air source[J]. Applied thermal engineering, 2022, 200: 117693.
[8] 刘仙萍, 田东, 雷豫豪, 等. 光伏/光热-地源热泵联合供热系统运行性能研究[J]. 太阳能学报, 2022, 43(9): 88-97.
LIU X P, TIAN D, LEI Y H, et al.Performance analysis for solar photovoltaic/thermal ground source heat pump hybrid heating system[J]. Acta energiae solaris sinica, 2022, 43(9): 88-97.
[9] EMMI G, TISATO C, ZARRELLA A, et al.Ulti-source heat pump coupled with a photovoltaic thermal(PVT) hybrid solar collectors technology: a case study in residential application[J]. International journal of energy production and management, 2016, 1(4): 382-392.
[10] 曾乃晖, 袁艳平, 孙亮亮, 等. 基于TRNSYS的空气源热泵辅助太阳能热水系统优化研究[J]. 太阳能学报, 2018, 39(5): 1245-1254.
ZENG N H, YUAN Y P, SUN L L, et al.Optimization on air source heat pump assisted solar water heating system based on TRNSYS[J]. Acta energiae solaris sinica, 2018, 39(5): 1245-1254.
[11] 祝彩霞, 孙婷婷, 刘艳峰, 等. 太阳能与空气源热泵联合供暖系统容量匹配及运行优化[J]. 太阳能学报, 2021, 42(8): 215-222.
ZHU C X, SUN T T, LIU Y F, et al.Capacity matching and operation optimization of solar energy and air source heat pump combined heating system[J]. Acta energiae solaris sinica, 2021, 42(8): 215-222.
[12] 陈淑琴, 陆敏艳, 谭洪卫, 等. 基于多目标优化的办公建筑可再生能源系统集成优化配置方案研究[J]. 太阳能学报, 2018, 39(11): 3147-3154.
CHEN S Q, LU M Y, TAN H W, et al.Research on integration renewable energy systems in office building based on multi-objective optimization[J]. Acta energiae solaris sinica, 2018, 39(11): 3147-3154.
[13] 谭心, 朱振经, 孙国鑫, 等. 基于模糊层次分析法的太阳能-空气源热泵复合供暖系统多目标优化[J]. 太阳能学报, 2022, 43(10): 94-103.
TAN X, ZHU Z J, SUN G X, et al.Multi-objective optimization of air-soloar source heat pump combined heating system based on fuzzy analytic hierarch process[J]. Acta energiae solaris sinica, 2022, 43(10): 94-103.
[14] GROSSI I, DONGELLINI M, PIAZZI A, et al.Dynamic modelling and energy performance analysis of an innovative dual-source heat pump system[J]. Applied thermal engineering, 2018, 142: 745-759.
[15] GB/T 51350—2019. 近零能耗建筑技术标准[S].
GB/T 51350—2019. Technical standard for nearly zero energy buildings[S].
[16] GALISAI S, GHIANI E, PILO F.Multi-objective and multi-criteria optimization of microgrids for nearly zero-energy buildings[C]//2019 International Conference on Smart Energy Systems and Technologies (SEST). Porto, Portugal, 2019: 1-6.
[17] OSMO PALONEN M, HAMDY M, HASAN A L.Mobo A new software for multi-objective building performance optimization[C]//Proceedings of Building Simulation 2013: 13th Conference of IBPSA. France,2013: 2567-2574.
[18] DEB K, PRATAP A, AGARWAL S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.
[19] 余镇雨, 路菲, 邹瑜, 等. 基于模拟的多目标优化方法在近零能耗建筑性能优化设计中的应用[J]. 建筑科学, 2019, 35(10): 8-15.
YU Z Y, LU F, ZOU Y, et al.A simulation-based multi-objective optimization approach for design of nearly zero energy buildings[J]. Building science, 2019, 35(10): 8-15.

基金

国家自然科学基金(51778376); 辽宁省教育厅面上项目(LJKZ0577); 沈阳市科技计划(21-108-9-03)

PDF(2304 KB)

Accesses

Citation

Detail

段落导航
相关文章

/